Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310666197> ?p ?o ?g. }
- W4310666197 abstract "Abstract Metal–organic frameworks (MOFs), have emerged as ideal class of materials for the identification of structure–property relationships and for the targeted design of multifunctional materials for diverse applications. While the powder form is most common, for the integration of MOFs into devices, typically thin films of surface anchored MOFs (SURMOFs), are required. Although the quality of SURMOFs emerging from layer‐by‐layer approaches is impressive, previous works revealed that the optimum growth conditions are very different between different types of MOFs and different substrates. Furthermore, the choice of appropriate synthesis conditions (e.g., solvents, modulators, concentrations, immersion times) is crucial for the growth process and needs to be adjusted for different substrates. Machine learning (ML) approaches show great promise for multi‐parameter optimization problems such as the above discussed growth conditions for SURMOF on a particular substrate. Here, this work presents an ML‐based approach allowing to quickly identify optimized growth conditions for HKUST‐I SURMOFs with high crystallinity and uniform orientation. This process can subsequently be used to optimize growth on other types of substrates. In addition, an analysis of the results allows to gain further insights into the factors governing the growth of MOF thin films." @default.
- W4310666197 created "2022-12-15" @default.
- W4310666197 creator A5006974557 @default.
- W4310666197 creator A5027301363 @default.
- W4310666197 creator A5031475311 @default.
- W4310666197 creator A5038053043 @default.
- W4310666197 creator A5038960907 @default.
- W4310666197 creator A5055063975 @default.
- W4310666197 creator A5064307923 @default.
- W4310666197 creator A5083888222 @default.
- W4310666197 date "2022-12-04" @default.
- W4310666197 modified "2023-10-01" @default.
- W4310666197 title "Fully Automated Optimization of Robot‐Based MOF Thin Film Growth via Machine Learning Approaches" @default.
- W4310666197 cites W1964281923 @default.
- W4310666197 cites W1974590631 @default.
- W4310666197 cites W1974966064 @default.
- W4310666197 cites W1975501285 @default.
- W4310666197 cites W1998151715 @default.
- W4310666197 cites W1999918445 @default.
- W4310666197 cites W2004550299 @default.
- W4310666197 cites W2014903641 @default.
- W4310666197 cites W2020845026 @default.
- W4310666197 cites W2027394833 @default.
- W4310666197 cites W2062269633 @default.
- W4310666197 cites W2065492092 @default.
- W4310666197 cites W2071909985 @default.
- W4310666197 cites W2078444809 @default.
- W4310666197 cites W2083172037 @default.
- W4310666197 cites W2086593157 @default.
- W4310666197 cites W2090677477 @default.
- W4310666197 cites W2111493705 @default.
- W4310666197 cites W2114178155 @default.
- W4310666197 cites W2141939342 @default.
- W4310666197 cites W2154358696 @default.
- W4310666197 cites W2166634217 @default.
- W4310666197 cites W2253252155 @default.
- W4310666197 cites W2328557786 @default.
- W4310666197 cites W2396678916 @default.
- W4310666197 cites W2560737891 @default.
- W4310666197 cites W2566685601 @default.
- W4310666197 cites W2599075544 @default.
- W4310666197 cites W2607848054 @default.
- W4310666197 cites W2733068487 @default.
- W4310666197 cites W2746074403 @default.
- W4310666197 cites W2763709501 @default.
- W4310666197 cites W2793916189 @default.
- W4310666197 cites W2889048353 @default.
- W4310666197 cites W2896194532 @default.
- W4310666197 cites W2899871166 @default.
- W4310666197 cites W2904605029 @default.
- W4310666197 cites W2910636130 @default.
- W4310666197 cites W3006557729 @default.
- W4310666197 cites W3044772584 @default.
- W4310666197 cites W3205371883 @default.
- W4310666197 cites W4206855549 @default.
- W4310666197 cites W4220895305 @default.
- W4310666197 doi "https://doi.org/10.1002/admi.202201771" @default.
- W4310666197 hasPublicationYear "2022" @default.
- W4310666197 type Work @default.
- W4310666197 citedByCount "5" @default.
- W4310666197 countsByYear W43106661972023 @default.
- W4310666197 crossrefType "journal-article" @default.
- W4310666197 hasAuthorship W4310666197A5006974557 @default.
- W4310666197 hasAuthorship W4310666197A5027301363 @default.
- W4310666197 hasAuthorship W4310666197A5031475311 @default.
- W4310666197 hasAuthorship W4310666197A5038053043 @default.
- W4310666197 hasAuthorship W4310666197A5038960907 @default.
- W4310666197 hasAuthorship W4310666197A5055063975 @default.
- W4310666197 hasAuthorship W4310666197A5064307923 @default.
- W4310666197 hasAuthorship W4310666197A5083888222 @default.
- W4310666197 hasBestOaLocation W43106661971 @default.
- W4310666197 hasConcept C111368507 @default.
- W4310666197 hasConcept C127313418 @default.
- W4310666197 hasConcept C159985019 @default.
- W4310666197 hasConcept C171250308 @default.
- W4310666197 hasConcept C19067145 @default.
- W4310666197 hasConcept C192562407 @default.
- W4310666197 hasConcept C2777289219 @default.
- W4310666197 hasConcept C2779227376 @default.
- W4310666197 hasConcept C46275449 @default.
- W4310666197 hasConceptScore W4310666197C111368507 @default.
- W4310666197 hasConceptScore W4310666197C127313418 @default.
- W4310666197 hasConceptScore W4310666197C159985019 @default.
- W4310666197 hasConceptScore W4310666197C171250308 @default.
- W4310666197 hasConceptScore W4310666197C19067145 @default.
- W4310666197 hasConceptScore W4310666197C192562407 @default.
- W4310666197 hasConceptScore W4310666197C2777289219 @default.
- W4310666197 hasConceptScore W4310666197C2779227376 @default.
- W4310666197 hasConceptScore W4310666197C46275449 @default.
- W4310666197 hasFunder F4320320879 @default.
- W4310666197 hasIssue "3" @default.
- W4310666197 hasLocation W43106661971 @default.
- W4310666197 hasOpenAccess W4310666197 @default.
- W4310666197 hasPrimaryLocation W43106661971 @default.
- W4310666197 hasRelatedWork W2008424349 @default.
- W4310666197 hasRelatedWork W2073985137 @default.
- W4310666197 hasRelatedWork W2075164443 @default.
- W4310666197 hasRelatedWork W2136375713 @default.
- W4310666197 hasRelatedWork W2146118997 @default.
- W4310666197 hasRelatedWork W2326804475 @default.