Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310668858> ?p ?o ?g. }
- W4310668858 endingPage "1300" @default.
- W4310668858 startingPage "1291" @default.
- W4310668858 abstract "We aimed to assess the value of dose distribution-based dosiomics and planning computed tomography-based radiomics to predict radiation-induced temporal lobe injury (TLI) and guide individualized intensity modulated radiation therapy.A total of 5599 nasopharyngeal carcinoma patients were enrolled, including 2503, 1072, 988, and 1036 patients in the training, validation, prospective test, and external test cohorts, respectively. The concordance index (C-index) was used to compare the performance of the radiomics and dosiomics models with that of the quantitative analyses of normal tissue effects in the clinic and Wen's models. The predicted TLI-free survival rates of redesigned simulated plans with the same dose-volume histogram but different dose distributions for same patient in a cohort of 30 randomly selected patients were compared by the Wilcoxon matched-pairs signed-rank test.The radiomics and dosiomics signatures were constructed based on 30 selected computed tomography features and 10 selected dose distribution features, respectively, which were important predictors of TLI-free survival (all P <.001). However, the radiomics signature had a low C-index. The dosiomics risk model combining the dosiomics signature, D1cc, and age had favorable performance, with C-index values of 0.776, 0.811, 0.805, and 0.794 in the training, validation, prospective test, and external test cohorts, respectively, which were better than those of the quantitative analyses of normal tissue effects in the clinic model and Wen's model (all P <.001). The dosiomics risk model can further distinguish patients in a same risk category divided by other models (all P <.05). Conversely, the other models were unable to separate populations classified by the dosiomics risk model (all P > .05). Two simulated plans with the same dose-volume histogram but different dose distributions had different TLI-free survival rates predicted by dosiomics risk model (all P ≤ .002).The dosiomics risk model was superior to traditional models in predicting the risk of TLI. This is a promising approach to precisely predict radiation-induced toxicities and guide individualized intensity modulated radiation therapy." @default.
- W4310668858 created "2022-12-15" @default.
- W4310668858 creator A5007489933 @default.
- W4310668858 creator A5010344508 @default.
- W4310668858 creator A5017366969 @default.
- W4310668858 creator A5030791781 @default.
- W4310668858 creator A5037385416 @default.
- W4310668858 creator A5037583548 @default.
- W4310668858 creator A5038285061 @default.
- W4310668858 creator A5041836364 @default.
- W4310668858 creator A5047670450 @default.
- W4310668858 creator A5054963574 @default.
- W4310668858 creator A5071672663 @default.
- W4310668858 creator A5082902686 @default.
- W4310668858 creator A5087671984 @default.
- W4310668858 date "2023-04-01" @default.
- W4310668858 modified "2023-10-05" @default.
- W4310668858 title "Dosiomics Risk Model for Predicting Radiation Induced Temporal Lobe Injury and Guiding Individual Intensity-Modulated Radiation Therapy" @default.
- W4310668858 cites W1492772022 @default.
- W4310668858 cites W1965525170 @default.
- W4310668858 cites W1966392141 @default.
- W4310668858 cites W2019694480 @default.
- W4310668858 cites W2029328961 @default.
- W4310668858 cites W2046701188 @default.
- W4310668858 cites W2046829765 @default.
- W4310668858 cites W2080940754 @default.
- W4310668858 cites W2103004421 @default.
- W4310668858 cites W2119018166 @default.
- W4310668858 cites W2146376732 @default.
- W4310668858 cites W2146658758 @default.
- W4310668858 cites W2174661749 @default.
- W4310668858 cites W2346343836 @default.
- W4310668858 cites W2408346026 @default.
- W4310668858 cites W2808910874 @default.
- W4310668858 cites W2887409467 @default.
- W4310668858 cites W2897433490 @default.
- W4310668858 cites W2939674254 @default.
- W4310668858 cites W2939853793 @default.
- W4310668858 cites W2995145028 @default.
- W4310668858 cites W3125213433 @default.
- W4310668858 cites W3184912599 @default.
- W4310668858 cites W4214920103 @default.
- W4310668858 doi "https://doi.org/10.1016/j.ijrobp.2022.11.036" @default.
- W4310668858 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36462689" @default.
- W4310668858 hasPublicationYear "2023" @default.
- W4310668858 type Work @default.
- W4310668858 citedByCount "3" @default.
- W4310668858 countsByYear W43106688582023 @default.
- W4310668858 crossrefType "journal-article" @default.
- W4310668858 hasAuthorship W4310668858A5007489933 @default.
- W4310668858 hasAuthorship W4310668858A5010344508 @default.
- W4310668858 hasAuthorship W4310668858A5017366969 @default.
- W4310668858 hasAuthorship W4310668858A5030791781 @default.
- W4310668858 hasAuthorship W4310668858A5037385416 @default.
- W4310668858 hasAuthorship W4310668858A5037583548 @default.
- W4310668858 hasAuthorship W4310668858A5038285061 @default.
- W4310668858 hasAuthorship W4310668858A5041836364 @default.
- W4310668858 hasAuthorship W4310668858A5047670450 @default.
- W4310668858 hasAuthorship W4310668858A5054963574 @default.
- W4310668858 hasAuthorship W4310668858A5071672663 @default.
- W4310668858 hasAuthorship W4310668858A5082902686 @default.
- W4310668858 hasAuthorship W4310668858A5087671984 @default.
- W4310668858 hasBestOaLocation W43106688581 @default.
- W4310668858 hasConcept C126322002 @default.
- W4310668858 hasConcept C126838900 @default.
- W4310668858 hasConcept C12868164 @default.
- W4310668858 hasConcept C160798450 @default.
- W4310668858 hasConcept C188816634 @default.
- W4310668858 hasConcept C201645570 @default.
- W4310668858 hasConcept C206041023 @default.
- W4310668858 hasConcept C2778559731 @default.
- W4310668858 hasConcept C2989005 @default.
- W4310668858 hasConcept C509974204 @default.
- W4310668858 hasConcept C71924100 @default.
- W4310668858 hasConceptScore W4310668858C126322002 @default.
- W4310668858 hasConceptScore W4310668858C126838900 @default.
- W4310668858 hasConceptScore W4310668858C12868164 @default.
- W4310668858 hasConceptScore W4310668858C160798450 @default.
- W4310668858 hasConceptScore W4310668858C188816634 @default.
- W4310668858 hasConceptScore W4310668858C201645570 @default.
- W4310668858 hasConceptScore W4310668858C206041023 @default.
- W4310668858 hasConceptScore W4310668858C2778559731 @default.
- W4310668858 hasConceptScore W4310668858C2989005 @default.
- W4310668858 hasConceptScore W4310668858C509974204 @default.
- W4310668858 hasConceptScore W4310668858C71924100 @default.
- W4310668858 hasIssue "5" @default.
- W4310668858 hasLocation W43106688581 @default.
- W4310668858 hasLocation W43106688582 @default.
- W4310668858 hasOpenAccess W4310668858 @default.
- W4310668858 hasPrimaryLocation W43106688581 @default.
- W4310668858 hasRelatedWork W1517024399 @default.
- W4310668858 hasRelatedWork W1601684588 @default.
- W4310668858 hasRelatedWork W1897313079 @default.
- W4310668858 hasRelatedWork W2104328188 @default.
- W4310668858 hasRelatedWork W2108427450 @default.
- W4310668858 hasRelatedWork W2396330467 @default.
- W4310668858 hasRelatedWork W2563167156 @default.
- W4310668858 hasRelatedWork W2915108716 @default.