Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310673637> ?p ?o ?g. }
- W4310673637 abstract "Background: Analysis of electrocardiogram (ECG) provides a straightforward and non-invasive approach for cardiologists to diagnose and classify the nature and severity of variant cardiac diseases including cardiac arrhythmia. However, the interpretation and analysis of ECG are highly working-load demanding, and the subjective may lead to false diagnoses and heartbeats classification. In recent years, many deep learning works showed an excellent role in accurate heartbeats classification. However, the imbalance of heartbeat classes is universal in most of the available ECG databases since abnormal heartbeats are always relatively rare in real life scenarios. In addition, many existing approaches achieved prominent results by removing noise and extracting features in data preprocessing, which relies heavily on powerful computers. It is a pressing need to develop efficient and automatic light weighted algorithms for accurate heartbeats classification that can be used in portable ECG sensors. Objective: This study aims at developing a robust and efficient deep learning method, which can be embedded into wearable or portable ECG monitors for classifying heartbeats. Methods: We proposed a novel and light weighted deep learning architecture with weight-based loss based on a convolutional neural network (CNN) and bidirectional long short-term memory (Bi-LSTM) that can automatically identify five types of ECG heartbeats according to the AAMI EC57 standard. It was also true that the raw ECG signals were simply segmented without noise removal and other feature extraction processing. Moreover, to tackle the challenge of classification bias due to imbalanced ECG datasets for different types of arrhythmias, we introduced a weight-based loss function to reduce the influence of over-weighted categories in the ECG dataset. For avoiding the influence of the division of validation dataset, k-fold method was adopted to improve the reliability of the model. Results: The proposed algorithm is trained and tested on MIT-BIH Arrhythmia Database, and achieves an average of 99.33% accuracy, 93.67% sensitivity, 99.18% specificity, 89.85% positive prediction, and 91.65% F1 score." @default.
- W4310673637 created "2022-12-15" @default.
- W4310673637 creator A5005765148 @default.
- W4310673637 creator A5043271142 @default.
- W4310673637 creator A5087003459 @default.
- W4310673637 date "2022-12-05" @default.
- W4310673637 modified "2023-09-25" @default.
- W4310673637 title "A robust multiple heartbeats classification with weight-based loss based on convolutional neural network and bidirectional long short-term memory" @default.
- W4310673637 cites W1586692934 @default.
- W4310673637 cites W2162800060 @default.
- W4310673637 cites W2251133041 @default.
- W4310673637 cites W2289846183 @default.
- W4310673637 cites W2291961022 @default.
- W4310673637 cites W2748902594 @default.
- W4310673637 cites W2781924583 @default.
- W4310673637 cites W2798098034 @default.
- W4310673637 cites W2805227459 @default.
- W4310673637 cites W2807294016 @default.
- W4310673637 cites W2810123878 @default.
- W4310673637 cites W2886982273 @default.
- W4310673637 cites W2887643731 @default.
- W4310673637 cites W2889838428 @default.
- W4310673637 cites W2891293290 @default.
- W4310673637 cites W2896675340 @default.
- W4310673637 cites W2905877654 @default.
- W4310673637 cites W2906113915 @default.
- W4310673637 cites W2913705661 @default.
- W4310673637 cites W2924659638 @default.
- W4310673637 cites W2961638199 @default.
- W4310673637 cites W2969771517 @default.
- W4310673637 cites W2974952570 @default.
- W4310673637 cites W2990628560 @default.
- W4310673637 cites W3000662942 @default.
- W4310673637 cites W3011546997 @default.
- W4310673637 cites W3012029061 @default.
- W4310673637 cites W3013966144 @default.
- W4310673637 cites W3027572331 @default.
- W4310673637 cites W3096527050 @default.
- W4310673637 cites W3106455851 @default.
- W4310673637 cites W3119698209 @default.
- W4310673637 cites W3123326053 @default.
- W4310673637 cites W3129167842 @default.
- W4310673637 cites W3165000753 @default.
- W4310673637 cites W3197632104 @default.
- W4310673637 cites W3209282706 @default.
- W4310673637 cites W4200312906 @default.
- W4310673637 cites W4200342043 @default.
- W4310673637 cites W4200420731 @default.
- W4310673637 cites W4206415938 @default.
- W4310673637 cites W4210811842 @default.
- W4310673637 cites W4224993403 @default.
- W4310673637 cites W4283833652 @default.
- W4310673637 cites W4285740439 @default.
- W4310673637 doi "https://doi.org/10.3389/fphys.2022.982537" @default.
- W4310673637 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36545286" @default.
- W4310673637 hasPublicationYear "2022" @default.
- W4310673637 type Work @default.
- W4310673637 citedByCount "0" @default.
- W4310673637 crossrefType "journal-article" @default.
- W4310673637 hasAuthorship W4310673637A5005765148 @default.
- W4310673637 hasAuthorship W4310673637A5043271142 @default.
- W4310673637 hasAuthorship W4310673637A5087003459 @default.
- W4310673637 hasBestOaLocation W43106736371 @default.
- W4310673637 hasConcept C108583219 @default.
- W4310673637 hasConcept C115961682 @default.
- W4310673637 hasConcept C119857082 @default.
- W4310673637 hasConcept C13852961 @default.
- W4310673637 hasConcept C138885662 @default.
- W4310673637 hasConcept C153180895 @default.
- W4310673637 hasConcept C154945302 @default.
- W4310673637 hasConcept C2776401178 @default.
- W4310673637 hasConcept C34736171 @default.
- W4310673637 hasConcept C38652104 @default.
- W4310673637 hasConcept C41008148 @default.
- W4310673637 hasConcept C41895202 @default.
- W4310673637 hasConcept C50644808 @default.
- W4310673637 hasConcept C52622490 @default.
- W4310673637 hasConcept C81363708 @default.
- W4310673637 hasConcept C99498987 @default.
- W4310673637 hasConceptScore W4310673637C108583219 @default.
- W4310673637 hasConceptScore W4310673637C115961682 @default.
- W4310673637 hasConceptScore W4310673637C119857082 @default.
- W4310673637 hasConceptScore W4310673637C13852961 @default.
- W4310673637 hasConceptScore W4310673637C138885662 @default.
- W4310673637 hasConceptScore W4310673637C153180895 @default.
- W4310673637 hasConceptScore W4310673637C154945302 @default.
- W4310673637 hasConceptScore W4310673637C2776401178 @default.
- W4310673637 hasConceptScore W4310673637C34736171 @default.
- W4310673637 hasConceptScore W4310673637C38652104 @default.
- W4310673637 hasConceptScore W4310673637C41008148 @default.
- W4310673637 hasConceptScore W4310673637C41895202 @default.
- W4310673637 hasConceptScore W4310673637C50644808 @default.
- W4310673637 hasConceptScore W4310673637C52622490 @default.
- W4310673637 hasConceptScore W4310673637C81363708 @default.
- W4310673637 hasConceptScore W4310673637C99498987 @default.
- W4310673637 hasLocation W43106736371 @default.
- W4310673637 hasLocation W43106736372 @default.
- W4310673637 hasLocation W43106736373 @default.
- W4310673637 hasOpenAccess W4310673637 @default.
- W4310673637 hasPrimaryLocation W43106736371 @default.