Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310673758> ?p ?o ?g. }
- W4310673758 endingPage "388" @default.
- W4310673758 startingPage "363" @default.
- W4310673758 abstract "Alzheimer's disease (AD) is a neurological illness that causes cognitive impairment and has no known treatment. The premise for delivering timely therapy is the early diagnosis of AD before clinical symptoms appear. Mild cognitive impairment is an intermediate stage in which cognitively normal patients can be distinguished from those with AD. In this study, we propose a hybrid multimodal deep-learning framework consisting of a 3D convolutional neural network (3D CNN) followed by a bidirectional recurrent neural network (BRNN). The proposed 3D CNN captures intra-slice features from each 3D magnetic resonance imaging (MRI) volume, whereas the BRNN module identifies the inter-sequence patterns that lead to AD. This study is conducted based on longitudinal 3D MRI volumes collected over a six-months time span. We further investigate the effect of fusing MRI with cross-sectional biomarkers, such as patients’ demographic and cognitive scores from their baseline visit. In addition, we present a novel explainability approach that helps domain experts and practitioners to understand the end output of the proposed multimodal. Extensive experiments reveal that the accuracy, precision, recall, and area under the receiver operating characteristic curve of the proposed framework are 96%, 99%, 92%, and 96%, respectively. These results are based on the fusion of MRI and demographic features and indicate that the proposed framework becomes more stable when exposed to a more complete set of longitudinal data. Moreover, the explainability module provides extra support for the progression claim by more accurately identifying the brain regions that domain experts commonly report during diagnoses." @default.
- W4310673758 created "2022-12-15" @default.
- W4310673758 creator A5017326471 @default.
- W4310673758 creator A5020276916 @default.
- W4310673758 creator A5023828527 @default.
- W4310673758 creator A5034370634 @default.
- W4310673758 creator A5047497905 @default.
- W4310673758 creator A5052265483 @default.
- W4310673758 date "2023-04-01" @default.
- W4310673758 modified "2023-10-03" @default.
- W4310673758 title "Prediction of Alzheimer's progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data" @default.
- W4310673758 cites W1498436455 @default.
- W4310673758 cites W1587740805 @default.
- W4310673758 cites W1857124936 @default.
- W4310673758 cites W1902786215 @default.
- W4310673758 cites W1980434662 @default.
- W4310673758 cites W1983364832 @default.
- W4310673758 cites W1984110541 @default.
- W4310673758 cites W2005821483 @default.
- W4310673758 cites W2014418634 @default.
- W4310673758 cites W2035351162 @default.
- W4310673758 cites W2069143585 @default.
- W4310673758 cites W2073045674 @default.
- W4310673758 cites W2079484785 @default.
- W4310673758 cites W2093602450 @default.
- W4310673758 cites W2119576134 @default.
- W4310673758 cites W2122328291 @default.
- W4310673758 cites W2133703021 @default.
- W4310673758 cites W2135011268 @default.
- W4310673758 cites W2136848157 @default.
- W4310673758 cites W2151915265 @default.
- W4310673758 cites W2151920318 @default.
- W4310673758 cites W2156676059 @default.
- W4310673758 cites W2194775991 @default.
- W4310673758 cites W2343676416 @default.
- W4310673758 cites W2402346616 @default.
- W4310673758 cites W2491231086 @default.
- W4310673758 cites W2567599812 @default.
- W4310673758 cites W2580576085 @default.
- W4310673758 cites W2587023207 @default.
- W4310673758 cites W2736333670 @default.
- W4310673758 cites W2769349322 @default.
- W4310673758 cites W2793804994 @default.
- W4310673758 cites W2886568032 @default.
- W4310673758 cites W2889669663 @default.
- W4310673758 cites W2901020939 @default.
- W4310673758 cites W2909627766 @default.
- W4310673758 cites W2912541111 @default.
- W4310673758 cites W2921247158 @default.
- W4310673758 cites W2947168485 @default.
- W4310673758 cites W2975979380 @default.
- W4310673758 cites W2981731882 @default.
- W4310673758 cites W2995495466 @default.
- W4310673758 cites W2995524811 @default.
- W4310673758 cites W3006082823 @default.
- W4310673758 cites W3015459784 @default.
- W4310673758 cites W3031176687 @default.
- W4310673758 cites W3083682961 @default.
- W4310673758 cites W3087050764 @default.
- W4310673758 cites W3092077324 @default.
- W4310673758 cites W3092742617 @default.
- W4310673758 cites W3115069763 @default.
- W4310673758 cites W3115863418 @default.
- W4310673758 cites W3125069671 @default.
- W4310673758 cites W3129056955 @default.
- W4310673758 cites W3130844452 @default.
- W4310673758 cites W3181101419 @default.
- W4310673758 cites W3194360768 @default.
- W4310673758 cites W3197187552 @default.
- W4310673758 cites W3213384164 @default.
- W4310673758 cites W3217495832 @default.
- W4310673758 cites W4205530061 @default.
- W4310673758 cites W4210501746 @default.
- W4310673758 cites W4224314061 @default.
- W4310673758 cites W4241074797 @default.
- W4310673758 cites W4288053873 @default.
- W4310673758 cites W4294050824 @default.
- W4310673758 cites W4294811409 @default.
- W4310673758 cites W4296518655 @default.
- W4310673758 doi "https://doi.org/10.1016/j.inffus.2022.11.028" @default.
- W4310673758 hasPublicationYear "2023" @default.
- W4310673758 type Work @default.
- W4310673758 citedByCount "7" @default.
- W4310673758 countsByYear W43106737582023 @default.
- W4310673758 crossrefType "journal-article" @default.
- W4310673758 hasAuthorship W4310673758A5017326471 @default.
- W4310673758 hasAuthorship W4310673758A5020276916 @default.
- W4310673758 hasAuthorship W4310673758A5023828527 @default.
- W4310673758 hasAuthorship W4310673758A5034370634 @default.
- W4310673758 hasAuthorship W4310673758A5047497905 @default.
- W4310673758 hasAuthorship W4310673758A5052265483 @default.
- W4310673758 hasConcept C100660578 @default.
- W4310673758 hasConcept C108583219 @default.
- W4310673758 hasConcept C119857082 @default.
- W4310673758 hasConcept C126838900 @default.
- W4310673758 hasConcept C138885662 @default.
- W4310673758 hasConcept C143409427 @default.
- W4310673758 hasConcept C147168706 @default.