Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310673876> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4310673876 endingPage "102690" @default.
- W4310673876 startingPage "102690" @default.
- W4310673876 abstract "Diabetes mellitus has become one of the out brakes causing major health issues in developing countries like India. The need for leveraging technology is felt in diabetes management. The main objective of this work is to deploy machine learning methods for the detection and classification of diabetes having clinical relevance.Indian demographic and health survey-2016 dataset is considered and determined the risk factors for continuous and categorical data. Kernel entropy component analysis is used for the dimensionality reduction of the feature set. Predictive exploration-based machine learning methods like logistic regression, gaussian naive Bayes, linear discriminant analysis, support vector classifier, k-nearest neighbor, decision tree, extreme gradient boosting, kernel entropy component analysis, and random forest are deployed in the work. The deployed methodology has three phases: feature extraction, classification, and prediction.Random Forest gave the maximum classification accuracy of 99.84% and 96.75% for imbalanced and kernel entropy component analysis-induced balanced datasets (using synthetic minority oversampling technique) respectively. The maximum precision of 99.64% is obtained using a support vector classifier on the balanced dataset. The area under the curve is 99%, which is observed from kernel entropy component analysis induced random forest on the balanced dataset. All other models performed moderately when applied to kernel entropy component analysis trained dataset.Random Forest model performed better in comparison with other models. The overall performance of the machine learning models can be improved by training the diabetes dataset using kernel entropy component analysis." @default.
- W4310673876 created "2022-12-15" @default.
- W4310673876 creator A5006355956 @default.
- W4310673876 creator A5019815084 @default.
- W4310673876 creator A5046620481 @default.
- W4310673876 date "2023-01-01" @default.
- W4310673876 modified "2023-09-26" @default.
- W4310673876 title "Diabetes disease detection and classification on Indian demographic and health survey data using machine learning methods" @default.
- W4310673876 cites W1946463380 @default.
- W4310673876 cites W2149803014 @default.
- W4310673876 cites W2611159092 @default.
- W4310673876 cites W2990812044 @default.
- W4310673876 cites W3011093391 @default.
- W4310673876 cites W3158476738 @default.
- W4310673876 cites W3216633527 @default.
- W4310673876 doi "https://doi.org/10.1016/j.dsx.2022.102690" @default.
- W4310673876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36527769" @default.
- W4310673876 hasPublicationYear "2023" @default.
- W4310673876 type Work @default.
- W4310673876 citedByCount "4" @default.
- W4310673876 countsByYear W43106738762023 @default.
- W4310673876 crossrefType "journal-article" @default.
- W4310673876 hasAuthorship W4310673876A5006355956 @default.
- W4310673876 hasAuthorship W4310673876A5019815084 @default.
- W4310673876 hasAuthorship W4310673876A5046620481 @default.
- W4310673876 hasConcept C119857082 @default.
- W4310673876 hasConcept C122280245 @default.
- W4310673876 hasConcept C12267149 @default.
- W4310673876 hasConcept C151956035 @default.
- W4310673876 hasConcept C153180895 @default.
- W4310673876 hasConcept C154945302 @default.
- W4310673876 hasConcept C169258074 @default.
- W4310673876 hasConcept C182335926 @default.
- W4310673876 hasConcept C27438332 @default.
- W4310673876 hasConcept C41008148 @default.
- W4310673876 hasConcept C52001869 @default.
- W4310673876 hasConcept C5274069 @default.
- W4310673876 hasConcept C69738355 @default.
- W4310673876 hasConcept C70518039 @default.
- W4310673876 hasConcept C75866337 @default.
- W4310673876 hasConcept C84525736 @default.
- W4310673876 hasConceptScore W4310673876C119857082 @default.
- W4310673876 hasConceptScore W4310673876C122280245 @default.
- W4310673876 hasConceptScore W4310673876C12267149 @default.
- W4310673876 hasConceptScore W4310673876C151956035 @default.
- W4310673876 hasConceptScore W4310673876C153180895 @default.
- W4310673876 hasConceptScore W4310673876C154945302 @default.
- W4310673876 hasConceptScore W4310673876C169258074 @default.
- W4310673876 hasConceptScore W4310673876C182335926 @default.
- W4310673876 hasConceptScore W4310673876C27438332 @default.
- W4310673876 hasConceptScore W4310673876C41008148 @default.
- W4310673876 hasConceptScore W4310673876C52001869 @default.
- W4310673876 hasConceptScore W4310673876C5274069 @default.
- W4310673876 hasConceptScore W4310673876C69738355 @default.
- W4310673876 hasConceptScore W4310673876C70518039 @default.
- W4310673876 hasConceptScore W4310673876C75866337 @default.
- W4310673876 hasConceptScore W4310673876C84525736 @default.
- W4310673876 hasIssue "1" @default.
- W4310673876 hasLocation W43106738761 @default.
- W4310673876 hasLocation W43106738762 @default.
- W4310673876 hasOpenAccess W4310673876 @default.
- W4310673876 hasPrimaryLocation W43106738761 @default.
- W4310673876 hasRelatedWork W1756633271 @default.
- W4310673876 hasRelatedWork W2071626605 @default.
- W4310673876 hasRelatedWork W2145759202 @default.
- W4310673876 hasRelatedWork W2169725059 @default.
- W4310673876 hasRelatedWork W2358824780 @default.
- W4310673876 hasRelatedWork W4281846282 @default.
- W4310673876 hasRelatedWork W4321636153 @default.
- W4310673876 hasRelatedWork W4377964522 @default.
- W4310673876 hasRelatedWork W4383535405 @default.
- W4310673876 hasRelatedWork W4384345534 @default.
- W4310673876 hasVolume "17" @default.
- W4310673876 isParatext "false" @default.
- W4310673876 isRetracted "false" @default.
- W4310673876 workType "article" @default.