Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310676309> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4310676309 endingPage "440" @default.
- W4310676309 startingPage "423" @default.
- W4310676309 abstract "A large number of different source data is needed for multi-agent models of the spread of infectious diseases. Most of them are not directly accessible. Therefore, one of the key problems to design such models is the development of tools for obtaining data from various sources. This article presents approaches that allow to extract the values of the parameters of the functioning of the simulated society and statistical data on the development of the pandemic from text messages published in the Internet. The proposed method and software implementation provide intelligent search of open source information in the Internet and process of unstructured data. The data collected this way used to set up parameters of mathematical model, which provides ability to study various scenarios and predict progress of the epidemic in concrete regions. The emphasis of the proposed approach is placed on two main technologies. The first is the use of regular expressions. The second is analysis using machine learning methods. The use of the regular expression method allows for high-speed text processing, but its applicability is limited by a strong dependence on the context. Machine learning allows to adapt the information context of the message, but at the same time there is a relatively large amount of time spent on analysis. To improve the accuracy of the analysis and to level the shortcomings of each of these approaches, ways of combining these technologies are proposed. The article presents the obtained results of optimization of algorithms for obtaining the necessary data." @default.
- W4310676309 created "2022-12-15" @default.
- W4310676309 creator A5006002585 @default.
- W4310676309 creator A5012449243 @default.
- W4310676309 creator A5022401940 @default.
- W4310676309 creator A5026720246 @default.
- W4310676309 creator A5039976787 @default.
- W4310676309 creator A5046841381 @default.
- W4310676309 creator A5056603884 @default.
- W4310676309 creator A5066909715 @default.
- W4310676309 creator A5078524800 @default.
- W4310676309 creator A5087458807 @default.
- W4310676309 date "2022-12-04" @default.
- W4310676309 modified "2023-09-27" @default.
- W4310676309 title "Extracting Factual Information about the Pandemic from Open Internet Sources" @default.
- W4310676309 doi "https://doi.org/10.17537/2022.17.423" @default.
- W4310676309 hasPublicationYear "2022" @default.
- W4310676309 type Work @default.
- W4310676309 citedByCount "0" @default.
- W4310676309 crossrefType "journal-article" @default.
- W4310676309 hasAuthorship W4310676309A5006002585 @default.
- W4310676309 hasAuthorship W4310676309A5012449243 @default.
- W4310676309 hasAuthorship W4310676309A5022401940 @default.
- W4310676309 hasAuthorship W4310676309A5026720246 @default.
- W4310676309 hasAuthorship W4310676309A5039976787 @default.
- W4310676309 hasAuthorship W4310676309A5046841381 @default.
- W4310676309 hasAuthorship W4310676309A5056603884 @default.
- W4310676309 hasAuthorship W4310676309A5066909715 @default.
- W4310676309 hasAuthorship W4310676309A5078524800 @default.
- W4310676309 hasAuthorship W4310676309A5087458807 @default.
- W4310676309 hasBestOaLocation W43106763091 @default.
- W4310676309 hasConcept C110875604 @default.
- W4310676309 hasConcept C111919701 @default.
- W4310676309 hasConcept C119857082 @default.
- W4310676309 hasConcept C124101348 @default.
- W4310676309 hasConcept C136764020 @default.
- W4310676309 hasConcept C151730666 @default.
- W4310676309 hasConcept C154945302 @default.
- W4310676309 hasConcept C199360897 @default.
- W4310676309 hasConcept C2522767166 @default.
- W4310676309 hasConcept C26517878 @default.
- W4310676309 hasConcept C2777904410 @default.
- W4310676309 hasConcept C2779343474 @default.
- W4310676309 hasConcept C38652104 @default.
- W4310676309 hasConcept C41008148 @default.
- W4310676309 hasConcept C86803240 @default.
- W4310676309 hasConcept C98045186 @default.
- W4310676309 hasConceptScore W4310676309C110875604 @default.
- W4310676309 hasConceptScore W4310676309C111919701 @default.
- W4310676309 hasConceptScore W4310676309C119857082 @default.
- W4310676309 hasConceptScore W4310676309C124101348 @default.
- W4310676309 hasConceptScore W4310676309C136764020 @default.
- W4310676309 hasConceptScore W4310676309C151730666 @default.
- W4310676309 hasConceptScore W4310676309C154945302 @default.
- W4310676309 hasConceptScore W4310676309C199360897 @default.
- W4310676309 hasConceptScore W4310676309C2522767166 @default.
- W4310676309 hasConceptScore W4310676309C26517878 @default.
- W4310676309 hasConceptScore W4310676309C2777904410 @default.
- W4310676309 hasConceptScore W4310676309C2779343474 @default.
- W4310676309 hasConceptScore W4310676309C38652104 @default.
- W4310676309 hasConceptScore W4310676309C41008148 @default.
- W4310676309 hasConceptScore W4310676309C86803240 @default.
- W4310676309 hasConceptScore W4310676309C98045186 @default.
- W4310676309 hasIssue "2" @default.
- W4310676309 hasLocation W43106763091 @default.
- W4310676309 hasOpenAccess W4310676309 @default.
- W4310676309 hasPrimaryLocation W43106763091 @default.
- W4310676309 hasRelatedWork W2329452785 @default.
- W4310676309 hasRelatedWork W2356380379 @default.
- W4310676309 hasRelatedWork W2961085424 @default.
- W4310676309 hasRelatedWork W3046775127 @default.
- W4310676309 hasRelatedWork W3170094116 @default.
- W4310676309 hasRelatedWork W4285260836 @default.
- W4310676309 hasRelatedWork W4286629047 @default.
- W4310676309 hasRelatedWork W4306321456 @default.
- W4310676309 hasRelatedWork W4306674287 @default.
- W4310676309 hasRelatedWork W4224009465 @default.
- W4310676309 hasVolume "17" @default.
- W4310676309 isParatext "false" @default.
- W4310676309 isRetracted "false" @default.
- W4310676309 workType "article" @default.