Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310677257> ?p ?o ?g. }
- W4310677257 abstract "<sec> <title>BACKGROUND</title> Artificial intelligence (AI) holds tremendous potential for healthcare, as has been demonstrated across various use cases ranging from automated triage to assisted diagnosis. However, the limitations of AI must also be carefully considered in a fact-based debate on optimal use scenarios. In light of the prominent discussion around trust issues with AI, it is important to assess how and what physicians think about the topic in order to avoid general resistance to technology among medical practitioners. </sec> <sec> <title>OBJECTIVE</title> The aim of the present study was to identify key themes in medical professionals’ discussions of AI and to examine these themes for existent perceptions of AI. </sec> <sec> <title>METHODS</title> Using a computational grounded theory approach, 181 Reddit threads in the medical subreddits of r/medicine, r/radiology, r/surgery, and r/psychiatry were analyzed in order to identify key themes. We combined a quantitative, unsupervised machine learning approach for detecting thematic clusters with a qualitative data analysis for gaining a deeper understanding of the perceptions that medical professionals have of AI. </sec> <sec> <title>RESULTS</title> Three relevant key themes – (1) the perceived consequences of AI, (2) perceptions of the physician–AI relationship, and (3) a proposed way forward – emerged from the Reddit analysis. The first and second themes, in particular, were found in posts that appeared to be partially biased toward physicians’ fear of being replaced, toward the physicians’ skepticism of AI, and toward the physicians’ fear that patients may not accept AI. The third theme, however, involves a way forward and consists of factual discussions about how AI and medicine have to develop further in order to lead to the broad adoption of AI as well as to fruitful outcomes for healthcare. </sec> <sec> <title>CONCLUSIONS</title> Many physicians aim to yield the greatest value from AI for their patients and thus engage in constructive criticism of the technology. At the same time, a concerningly large number of physicians demonstrate perceptions that appear to be at least partially biased and that could hinder both successful use-case implementation and societal acceptance of AI in the future. Therefore, such biased perceptions need to be monitored and – where possible – countered. </sec>" @default.
- W4310677257 created "2022-12-15" @default.
- W4310677257 creator A5011743846 @default.
- W4310677257 creator A5032517407 @default.
- W4310677257 creator A5035418081 @default.
- W4310677257 creator A5048139020 @default.
- W4310677257 creator A5084671818 @default.
- W4310677257 date "2022-11-06" @default.
- W4310677257 modified "2023-09-28" @default.
- W4310677257 title "How do medical professionals make sense (or not) of artificial intelligence? A social-media-based computational grounded theory study (Preprint)" @default.
- W4310677257 cites W135604948 @default.
- W4310677257 cites W2017840148 @default.
- W4310677257 cites W2027764823 @default.
- W4310677257 cites W2038043464 @default.
- W4310677257 cites W2130998313 @default.
- W4310677257 cites W2132075088 @default.
- W4310677257 cites W2769563773 @default.
- W4310677257 cites W2790855988 @default.
- W4310677257 cites W2799883523 @default.
- W4310677257 cites W2799930623 @default.
- W4310677257 cites W2811507747 @default.
- W4310677257 cites W2895763047 @default.
- W4310677257 cites W2896245518 @default.
- W4310677257 cites W2900239614 @default.
- W4310677257 cites W2905136983 @default.
- W4310677257 cites W2907342423 @default.
- W4310677257 cites W2908817998 @default.
- W4310677257 cites W2910165844 @default.
- W4310677257 cites W2949488362 @default.
- W4310677257 cites W2953532875 @default.
- W4310677257 cites W2968870211 @default.
- W4310677257 cites W2981124546 @default.
- W4310677257 cites W3000239480 @default.
- W4310677257 cites W3005218779 @default.
- W4310677257 cites W3012391191 @default.
- W4310677257 cites W3013578857 @default.
- W4310677257 cites W3013872196 @default.
- W4310677257 cites W3014479273 @default.
- W4310677257 cites W3036298167 @default.
- W4310677257 cites W3036458852 @default.
- W4310677257 cites W3036954433 @default.
- W4310677257 cites W3039044431 @default.
- W4310677257 cites W3042865117 @default.
- W4310677257 cites W3046201587 @default.
- W4310677257 cites W3082837871 @default.
- W4310677257 cites W3087972201 @default.
- W4310677257 cites W3094316170 @default.
- W4310677257 cites W3106934919 @default.
- W4310677257 cites W3113456870 @default.
- W4310677257 cites W3117511502 @default.
- W4310677257 cites W3130937151 @default.
- W4310677257 cites W3134138028 @default.
- W4310677257 cites W3136000444 @default.
- W4310677257 cites W3136425357 @default.
- W4310677257 cites W3136664331 @default.
- W4310677257 cites W3143784018 @default.
- W4310677257 cites W3156550296 @default.
- W4310677257 cites W3181376416 @default.
- W4310677257 cites W3186667780 @default.
- W4310677257 cites W4220997688 @default.
- W4310677257 cites W4283731277 @default.
- W4310677257 doi "https://doi.org/10.2196/preprints.44090" @default.
- W4310677257 hasPublicationYear "2022" @default.
- W4310677257 type Work @default.
- W4310677257 citedByCount "0" @default.
- W4310677257 crossrefType "posted-content" @default.
- W4310677257 hasAuthorship W4310677257A5011743846 @default.
- W4310677257 hasAuthorship W4310677257A5032517407 @default.
- W4310677257 hasAuthorship W4310677257A5035418081 @default.
- W4310677257 hasAuthorship W4310677257A5048139020 @default.
- W4310677257 hasAuthorship W4310677257A5084671818 @default.
- W4310677257 hasConcept C111472728 @default.
- W4310677257 hasConcept C118552586 @default.
- W4310677257 hasConcept C136764020 @default.
- W4310677257 hasConcept C138885662 @default.
- W4310677257 hasConcept C144024400 @default.
- W4310677257 hasConcept C154945302 @default.
- W4310677257 hasConcept C156325361 @default.
- W4310677257 hasConcept C15744967 @default.
- W4310677257 hasConcept C160735492 @default.
- W4310677257 hasConcept C169760540 @default.
- W4310677257 hasConcept C17744445 @default.
- W4310677257 hasConcept C18296254 @default.
- W4310677257 hasConcept C190248442 @default.
- W4310677257 hasConcept C199539241 @default.
- W4310677257 hasConcept C26760741 @default.
- W4310677257 hasConcept C2777120189 @default.
- W4310677257 hasConcept C36289849 @default.
- W4310677257 hasConcept C41008148 @default.
- W4310677257 hasConcept C43169469 @default.
- W4310677257 hasConcept C518677369 @default.
- W4310677257 hasConcept C74196892 @default.
- W4310677257 hasConceptScore W4310677257C111472728 @default.
- W4310677257 hasConceptScore W4310677257C118552586 @default.
- W4310677257 hasConceptScore W4310677257C136764020 @default.
- W4310677257 hasConceptScore W4310677257C138885662 @default.
- W4310677257 hasConceptScore W4310677257C144024400 @default.
- W4310677257 hasConceptScore W4310677257C154945302 @default.
- W4310677257 hasConceptScore W4310677257C156325361 @default.
- W4310677257 hasConceptScore W4310677257C15744967 @default.