Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310690995> ?p ?o ?g. }
- W4310690995 endingPage "113393" @default.
- W4310690995 startingPage "113393" @default.
- W4310690995 abstract "The SM2RAIN algorithm developed a simple analytical relationship by inverting the soil-water equation to estimate rainfall through the knowledge of soil moisture. The recently developed SM2RAIN-NWF algorithm offers an improvement in estimating rainfall by integrating the SM2RAIN algorithm and the net water flux (NWF) model. The Advanced Scatterometer (ASCAT) soil moisture products were used to estimate rainfall and evaluate the reliability of the SM2RAIN-NWF algorithm compared to the SM2RAIN on a national scale. Besides, the impact of Land cover-Soil texture-Climate (LSC) characteristics and the intensity of rainfall (four classes of intensity) on the performance of algorithms were discussed. Five performance metrics, including Correlation Coefficient (R), Kling–Gupta (KGE), Root Mean Square Error (RMSE), False Alarm Ration (FAR), and Probability of Detection (POD) were used to validate the estimated cumulative 5-, 14-, and 30-day rainfall. Furthermore, the effect of evapotranspiration (ET) and drainage terms were investigated in the performance of rainfall estimation through the SM2RAIN-NWF algorithm for the first time on a national scale. Results showed the rainfall estimations through the SM2RAIN-NWF algorithm improved approximately up to 7.5% in each accumulation (e.g. rainfall aggregation intervals (AGGR) 5 to 14 and 14 to 30) based on R and KGE indices. In addition, the SM2RAIN-NWF improved rainfall estimations up to 50% based on the KGE index in the southern half of Iran (arid and semi-arid climate) compared to the SM2RAIN estimates. The comprehensive evaluation and uncertainty analysis of rainfall estimations under the supervised classification of 11 LSC and 4 rainfall classes also showed the calibration of the SM2RAIN-NWF was highly affected by environmental and climatic circumstances. Uncertainty analysis showed the SM2RAIN-NWF algorithm can estimate rainfall more consistently in the five LSC classes namely 1) barren-clay loam-arid-desert, 2) barren-loam-arid-steppe, 3) barren-clay loam-arid-steppe, 4) urban-clay loam-arid-desert, and 5) urban-loam-arid-steppe. Similarly, estimating rainfall in the region with precipitation under 267 mm/year can be retrieved more reliably through the SM2RAIN-NWF algorithm. Results obtained from the ET analysis revealed an insignificant (<4%) effect of this term in improving the performance of the SM2RAIN-NWF algorithm. Also, the NWF equation confirmed the paramount role of the drainage term in enhancing the accuracy of rainfall estimates compared to the SM2RAIN method." @default.
- W4310690995 created "2022-12-15" @default.
- W4310690995 creator A5043878047 @default.
- W4310690995 creator A5055663395 @default.
- W4310690995 creator A5069874030 @default.
- W4310690995 creator A5072741774 @default.
- W4310690995 creator A5078293334 @default.
- W4310690995 date "2023-02-01" @default.
- W4310690995 modified "2023-09-27" @default.
- W4310690995 title "Performance assessment of SM2RAIN-NWF using ASCAT soil moisture via supervised land cover-soil-climate classification" @default.
- W4310690995 cites W1607492013 @default.
- W4310690995 cites W1672537596 @default.
- W4310690995 cites W1952172993 @default.
- W4310690995 cites W1969538058 @default.
- W4310690995 cites W1980989056 @default.
- W4310690995 cites W1991589602 @default.
- W4310690995 cites W2026865765 @default.
- W4310690995 cites W2036774006 @default.
- W4310690995 cites W2042691200 @default.
- W4310690995 cites W2051332113 @default.
- W4310690995 cites W2060430093 @default.
- W4310690995 cites W2080648396 @default.
- W4310690995 cites W2097402578 @default.
- W4310690995 cites W2101108516 @default.
- W4310690995 cites W2109582738 @default.
- W4310690995 cites W2120321707 @default.
- W4310690995 cites W2124805162 @default.
- W4310690995 cites W2147673164 @default.
- W4310690995 cites W2163843824 @default.
- W4310690995 cites W2166460224 @default.
- W4310690995 cites W2176303543 @default.
- W4310690995 cites W2269631561 @default.
- W4310690995 cites W2280253990 @default.
- W4310690995 cites W2485420366 @default.
- W4310690995 cites W2525201247 @default.
- W4310690995 cites W2606762649 @default.
- W4310690995 cites W2739254607 @default.
- W4310690995 cites W2756918146 @default.
- W4310690995 cites W2773928770 @default.
- W4310690995 cites W2793228011 @default.
- W4310690995 cites W2811176599 @default.
- W4310690995 cites W2853857594 @default.
- W4310690995 cites W2911143145 @default.
- W4310690995 cites W2911760140 @default.
- W4310690995 cites W2912558268 @default.
- W4310690995 cites W2944658186 @default.
- W4310690995 cites W2945669274 @default.
- W4310690995 cites W2949663102 @default.
- W4310690995 cites W2970829862 @default.
- W4310690995 cites W2981730281 @default.
- W4310690995 cites W2981763248 @default.
- W4310690995 cites W2990517150 @default.
- W4310690995 cites W2990544533 @default.
- W4310690995 cites W2994680372 @default.
- W4310690995 cites W2998799214 @default.
- W4310690995 cites W2999145867 @default.
- W4310690995 cites W3000155549 @default.
- W4310690995 cites W3010023817 @default.
- W4310690995 cites W3014718029 @default.
- W4310690995 cites W3036539904 @default.
- W4310690995 cites W3046859928 @default.
- W4310690995 cites W3099493035 @default.
- W4310690995 cites W3131675673 @default.
- W4310690995 cites W3136023281 @default.
- W4310690995 cites W3194318308 @default.
- W4310690995 cites W4206037371 @default.
- W4310690995 cites W4281625015 @default.
- W4310690995 doi "https://doi.org/10.1016/j.rse.2022.113393" @default.
- W4310690995 hasPublicationYear "2023" @default.
- W4310690995 type Work @default.
- W4310690995 citedByCount "0" @default.
- W4310690995 crossrefType "journal-article" @default.
- W4310690995 hasAuthorship W4310690995A5043878047 @default.
- W4310690995 hasAuthorship W4310690995A5055663395 @default.
- W4310690995 hasAuthorship W4310690995A5069874030 @default.
- W4310690995 hasAuthorship W4310690995A5072741774 @default.
- W4310690995 hasAuthorship W4310690995A5078293334 @default.
- W4310690995 hasConcept C105795698 @default.
- W4310690995 hasConcept C127313418 @default.
- W4310690995 hasConcept C139945424 @default.
- W4310690995 hasConcept C153294291 @default.
- W4310690995 hasConcept C161067210 @default.
- W4310690995 hasConcept C176783924 @default.
- W4310690995 hasConcept C187320778 @default.
- W4310690995 hasConcept C18903297 @default.
- W4310690995 hasConcept C205649164 @default.
- W4310690995 hasConcept C24939127 @default.
- W4310690995 hasConcept C2776212561 @default.
- W4310690995 hasConcept C33923547 @default.
- W4310690995 hasConcept C39432304 @default.
- W4310690995 hasConcept C41008148 @default.
- W4310690995 hasConcept C44838205 @default.
- W4310690995 hasConcept C53802167 @default.
- W4310690995 hasConcept C62649853 @default.
- W4310690995 hasConcept C76155785 @default.
- W4310690995 hasConcept C86803240 @default.
- W4310690995 hasConceptScore W4310690995C105795698 @default.
- W4310690995 hasConceptScore W4310690995C127313418 @default.