Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310691231> ?p ?o ?g. }
- W4310691231 endingPage "115306" @default.
- W4310691231 startingPage "115306" @default.
- W4310691231 abstract "The fast networking of high-speed rail (HSR) may cause in-service fatigue and ultimate load damage to bridges. This paper investigates the application of deep convolutional neural networks (CNNs) for multi-category damage image classification recognition of HSR-reinforced concrete (RC) bridges. The present study establishes a deep learning (DL) system based on a large amount of HSR bridge test data. When to begin, the damage done to HSR bridge piers may be broken down into three primary categories: concrete cracks, concrete spalling, and reinforcement exposure. These categories are determined by the statistics of HSR bridge pier testing. Secondly, in order to develop an automated recognition model for the damage of HSR piers, AlexNet CNNs were taught a transfer learning approach and then used to train themselves. The correct recognition rate of the three damaged pictures in the actual application of the model is 86% for cracks, 82% for reinforcement exposure, and 70% for concrete spalling, all of which have good recognition rates. The study's accuracy and precision enhance detection efficiency and may be utilized to identify HSR pier deterioration quickly. The research comprises a random selection from the training and validation sets. It also assesses the training model's generalization to out-of-sample pictures for engineering applications. This aspect of the work sets it apart from previous research in the same study area." @default.
- W4310691231 created "2022-12-15" @default.
- W4310691231 creator A5007504601 @default.
- W4310691231 creator A5011575707 @default.
- W4310691231 creator A5022315245 @default.
- W4310691231 creator A5029484872 @default.
- W4310691231 creator A5032889870 @default.
- W4310691231 creator A5033906206 @default.
- W4310691231 creator A5046224555 @default.
- W4310691231 creator A5058717920 @default.
- W4310691231 creator A5084747374 @default.
- W4310691231 date "2023-02-01" @default.
- W4310691231 modified "2023-10-15" @default.
- W4310691231 title "Convolutional neural networks (CNNs)-based multi-category damage detection and recognition of high-speed rail (HSR) reinforced concrete (RC) bridges using test images" @default.
- W4310691231 cites W1985095569 @default.
- W4310691231 cites W2588612844 @default.
- W4310691231 cites W2618530766 @default.
- W4310691231 cites W2754675106 @default.
- W4310691231 cites W2767522444 @default.
- W4310691231 cites W2768955070 @default.
- W4310691231 cites W2775484290 @default.
- W4310691231 cites W2778653980 @default.
- W4310691231 cites W2801492038 @default.
- W4310691231 cites W2804374538 @default.
- W4310691231 cites W2814406141 @default.
- W4310691231 cites W2896613037 @default.
- W4310691231 cites W2899144041 @default.
- W4310691231 cites W2903155537 @default.
- W4310691231 cites W2981416566 @default.
- W4310691231 cites W2987287906 @default.
- W4310691231 cites W2987361643 @default.
- W4310691231 cites W3012387223 @default.
- W4310691231 cites W3013359997 @default.
- W4310691231 cites W3083664991 @default.
- W4310691231 cites W3093739175 @default.
- W4310691231 cites W3100525490 @default.
- W4310691231 cites W3119844298 @default.
- W4310691231 cites W3127845496 @default.
- W4310691231 cites W3134108147 @default.
- W4310691231 cites W3168235592 @default.
- W4310691231 cites W3172178170 @default.
- W4310691231 cites W3178734692 @default.
- W4310691231 cites W3200441932 @default.
- W4310691231 cites W3204197025 @default.
- W4310691231 cites W3209651137 @default.
- W4310691231 cites W3217580385 @default.
- W4310691231 cites W4206108109 @default.
- W4310691231 cites W4210253497 @default.
- W4310691231 cites W4210633113 @default.
- W4310691231 cites W4210795569 @default.
- W4310691231 cites W4211234836 @default.
- W4310691231 cites W4224315407 @default.
- W4310691231 cites W4284973397 @default.
- W4310691231 cites W4298324773 @default.
- W4310691231 doi "https://doi.org/10.1016/j.engstruct.2022.115306" @default.
- W4310691231 hasPublicationYear "2023" @default.
- W4310691231 type Work @default.
- W4310691231 citedByCount "12" @default.
- W4310691231 countsByYear W43106912312023 @default.
- W4310691231 crossrefType "journal-article" @default.
- W4310691231 hasAuthorship W4310691231A5007504601 @default.
- W4310691231 hasAuthorship W4310691231A5011575707 @default.
- W4310691231 hasAuthorship W4310691231A5022315245 @default.
- W4310691231 hasAuthorship W4310691231A5029484872 @default.
- W4310691231 hasAuthorship W4310691231A5032889870 @default.
- W4310691231 hasAuthorship W4310691231A5033906206 @default.
- W4310691231 hasAuthorship W4310691231A5046224555 @default.
- W4310691231 hasAuthorship W4310691231A5058717920 @default.
- W4310691231 hasAuthorship W4310691231A5084747374 @default.
- W4310691231 hasConcept C100776233 @default.
- W4310691231 hasConcept C126322002 @default.
- W4310691231 hasConcept C127413603 @default.
- W4310691231 hasConcept C153180895 @default.
- W4310691231 hasConcept C154945302 @default.
- W4310691231 hasConcept C157892014 @default.
- W4310691231 hasConcept C41008148 @default.
- W4310691231 hasConcept C64355373 @default.
- W4310691231 hasConcept C66938386 @default.
- W4310691231 hasConcept C71924100 @default.
- W4310691231 hasConcept C81363708 @default.
- W4310691231 hasConceptScore W4310691231C100776233 @default.
- W4310691231 hasConceptScore W4310691231C126322002 @default.
- W4310691231 hasConceptScore W4310691231C127413603 @default.
- W4310691231 hasConceptScore W4310691231C153180895 @default.
- W4310691231 hasConceptScore W4310691231C154945302 @default.
- W4310691231 hasConceptScore W4310691231C157892014 @default.
- W4310691231 hasConceptScore W4310691231C41008148 @default.
- W4310691231 hasConceptScore W4310691231C64355373 @default.
- W4310691231 hasConceptScore W4310691231C66938386 @default.
- W4310691231 hasConceptScore W4310691231C71924100 @default.
- W4310691231 hasConceptScore W4310691231C81363708 @default.
- W4310691231 hasFunder F4320321001 @default.
- W4310691231 hasFunder F4320321514 @default.
- W4310691231 hasFunder F4320321540 @default.
- W4310691231 hasFunder F4320335777 @default.
- W4310691231 hasLocation W43106912311 @default.
- W4310691231 hasOpenAccess W4310691231 @default.
- W4310691231 hasPrimaryLocation W43106912311 @default.