Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310692007> ?p ?o ?g. }
- W4310692007 endingPage "E77" @default.
- W4310692007 startingPage "E69" @default.
- W4310692007 abstract "Magnetotelluric forward modeling is important for exploring underground electromagnetic anomalies. Although directly solving the electromagnetic wave equation has high accuracy, its computational cost is usually unaffordable for large-scale models. A neural network (NN) can increase the computation of the magnetotelluric forward modeling; however, its numerical accuracy is limited owing to the use of a simple network structure and small-scale training data sets. We have increased the computational efficiency of the magnetotelluric forward modeling by deep learning based on cyclic NN and full convolution NN models. First, we have extracted the basic characteristics of the 2D-magnetotelluric forward modeling, which were important for selecting and optimizing the network. Then, we have developed two forward network models: convolutional bidirectional long short-term memory (Conv-BiLSTM) and LinkNet with pretrained encoder and dilated convolution (D-LinkNet). Next, we have constructed data sets of large-scale multiple anomalies. Finally, we have tested our models using various examples. Existing methods only consider a single anomaly and have low accuracy; in contrast, our methods can handle multianomaly models because they have strong generalization, even though the training is based on models with two or three anomalies. Numerical experiments find that the average accuracy of the Conv-BiLSTM and D-LinkNet forward network models was 87.5% and 95.3%, respectively. Compared with D-LinkNet, the Conv-BiLSTM network model has lower accuracy but higher computational efficiency. Our deep-learning schemes can significantly reduce the computational burdens of the magnetotelluric forward modeling, and thus allow us to perform swift inversions of multianomaly models." @default.
- W4310692007 created "2022-12-15" @default.
- W4310692007 creator A5033768501 @default.
- W4310692007 creator A5048419223 @default.
- W4310692007 creator A5083023442 @default.
- W4310692007 creator A5086434385 @default.
- W4310692007 date "2023-03-01" @default.
- W4310692007 modified "2023-09-27" @default.
- W4310692007 title "Accelerating magnetotelluric forward modeling with deep learning: Conv-BiLSTM and D-LinkNet" @default.
- W4310692007 cites W1901129140 @default.
- W4310692007 cites W1903029394 @default.
- W4310692007 cites W1970694739 @default.
- W4310692007 cites W1974474746 @default.
- W4310692007 cites W1975551669 @default.
- W4310692007 cites W2064675550 @default.
- W4310692007 cites W2110485445 @default.
- W4310692007 cites W2128274957 @default.
- W4310692007 cites W2129736771 @default.
- W4310692007 cites W2141900923 @default.
- W4310692007 cites W2142063750 @default.
- W4310692007 cites W2170955118 @default.
- W4310692007 cites W2332694929 @default.
- W4310692007 cites W2490973202 @default.
- W4310692007 cites W2595279138 @default.
- W4310692007 cites W2893801697 @default.
- W4310692007 cites W2906386705 @default.
- W4310692007 cites W2912052494 @default.
- W4310692007 cites W2912642319 @default.
- W4310692007 cites W2915004230 @default.
- W4310692007 cites W2921770052 @default.
- W4310692007 cites W2979637052 @default.
- W4310692007 cites W2986812080 @default.
- W4310692007 cites W3104564825 @default.
- W4310692007 cites W3127723726 @default.
- W4310692007 doi "https://doi.org/10.1190/geo2021-0667.1" @default.
- W4310692007 hasPublicationYear "2023" @default.
- W4310692007 type Work @default.
- W4310692007 citedByCount "1" @default.
- W4310692007 countsByYear W43106920072023 @default.
- W4310692007 crossrefType "journal-article" @default.
- W4310692007 hasAuthorship W4310692007A5033768501 @default.
- W4310692007 hasAuthorship W4310692007A5048419223 @default.
- W4310692007 hasAuthorship W4310692007A5083023442 @default.
- W4310692007 hasAuthorship W4310692007A5086434385 @default.
- W4310692007 hasConcept C108583219 @default.
- W4310692007 hasConcept C112313211 @default.
- W4310692007 hasConcept C11413529 @default.
- W4310692007 hasConcept C119599485 @default.
- W4310692007 hasConcept C121332964 @default.
- W4310692007 hasConcept C127413603 @default.
- W4310692007 hasConcept C134306372 @default.
- W4310692007 hasConcept C153180895 @default.
- W4310692007 hasConcept C154945302 @default.
- W4310692007 hasConcept C177148314 @default.
- W4310692007 hasConcept C2778755073 @default.
- W4310692007 hasConcept C33923547 @default.
- W4310692007 hasConcept C41008148 @default.
- W4310692007 hasConcept C45347329 @default.
- W4310692007 hasConcept C45374587 @default.
- W4310692007 hasConcept C50644808 @default.
- W4310692007 hasConcept C62520636 @default.
- W4310692007 hasConcept C69990965 @default.
- W4310692007 hasConcept C81363708 @default.
- W4310692007 hasConceptScore W4310692007C108583219 @default.
- W4310692007 hasConceptScore W4310692007C112313211 @default.
- W4310692007 hasConceptScore W4310692007C11413529 @default.
- W4310692007 hasConceptScore W4310692007C119599485 @default.
- W4310692007 hasConceptScore W4310692007C121332964 @default.
- W4310692007 hasConceptScore W4310692007C127413603 @default.
- W4310692007 hasConceptScore W4310692007C134306372 @default.
- W4310692007 hasConceptScore W4310692007C153180895 @default.
- W4310692007 hasConceptScore W4310692007C154945302 @default.
- W4310692007 hasConceptScore W4310692007C177148314 @default.
- W4310692007 hasConceptScore W4310692007C2778755073 @default.
- W4310692007 hasConceptScore W4310692007C33923547 @default.
- W4310692007 hasConceptScore W4310692007C41008148 @default.
- W4310692007 hasConceptScore W4310692007C45347329 @default.
- W4310692007 hasConceptScore W4310692007C45374587 @default.
- W4310692007 hasConceptScore W4310692007C50644808 @default.
- W4310692007 hasConceptScore W4310692007C62520636 @default.
- W4310692007 hasConceptScore W4310692007C69990965 @default.
- W4310692007 hasConceptScore W4310692007C81363708 @default.
- W4310692007 hasIssue "2" @default.
- W4310692007 hasLocation W43106920071 @default.
- W4310692007 hasOpenAccess W4310692007 @default.
- W4310692007 hasPrimaryLocation W43106920071 @default.
- W4310692007 hasRelatedWork W2731899572 @default.
- W4310692007 hasRelatedWork W2738221750 @default.
- W4310692007 hasRelatedWork W3129634582 @default.
- W4310692007 hasRelatedWork W3133861977 @default.
- W4310692007 hasRelatedWork W3156786002 @default.
- W4310692007 hasRelatedWork W3165266428 @default.
- W4310692007 hasRelatedWork W4200173597 @default.
- W4310692007 hasRelatedWork W4312417841 @default.
- W4310692007 hasRelatedWork W4321369474 @default.
- W4310692007 hasRelatedWork W564581980 @default.
- W4310692007 hasVolume "88" @default.
- W4310692007 isParatext "false" @default.