Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310692012> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4310692012 abstract "<strong class=journal-contentHeaderColor>Abstract.</strong> The annual area burned due to wildfires in the western United States (WUS) increased by more than 300 % between 1984 and 2020. However, accounting for the nonlinear, spatially heterogeneous interactions between climate, vegetation, and human predictors driving the trends in fire frequency and sizes at different spatial scales remains a challenging problem for statistical fire models. Here we introduce a novel stochastic machine learning (SML) framework, SMLFire1.0, to model observed fire frequencies and sizes in 12 km x 12 km grid cells across the WUS. This framework is implemented using Mixture Density Networks trained on a wide suite of input predictors. The modeled WUS fire frequency corresponds well with observations at both monthly (<em>r </em>= 0.94) and annual (<em>r </em>= 0.85) timescales, as do the monthly (<em>r </em>= 0.90) and annual (<em>r </em>= 0.88) area burned. Moreover, the annual time series of both fire variables exhibit strong correlations (<em>r</em> ≥ 0.6) in 16 out of 18 ecoregions. Our ML model captures the interannual variability and the distinct multidecade increases in annual area burned for both forested and non-forested ecoregions. Evaluating predictor importance with Shapley additive explanations, we find that fire month vapor pressure deficit (VPD) is the dominant driver of fire frequencies and sizes across the WUS, followed by 1000-hour dead fuel moisture (FM1000), total monthly precipitation (Prec), mean daily maximum temperature (Tmax), and fraction of grassland cover in a grid cell. Our findings serve as a promising use case of ML techniques for wildfire prediction in particular and extreme event modeling more broadly. They also highlight the power of ML driven parameterizations for potential implementation in the fire modules of Dynamic Global Vegetation Models (DGVMs) and Earth System Models (ESMs)." @default.
- W4310692012 created "2022-12-15" @default.
- W4310692012 date "2022-12-05" @default.
- W4310692012 modified "2023-10-18" @default.
- W4310692012 title "Comment on egusphere-2022-1148" @default.
- W4310692012 doi "https://doi.org/10.5194/egusphere-2022-1148-rc1" @default.
- W4310692012 hasPublicationYear "2022" @default.
- W4310692012 type Work @default.
- W4310692012 citedByCount "0" @default.
- W4310692012 crossrefType "peer-review" @default.
- W4310692012 hasBestOaLocation W43106920121 @default.
- W4310692012 hasConcept C100970517 @default.
- W4310692012 hasConcept C107054158 @default.
- W4310692012 hasConcept C110872660 @default.
- W4310692012 hasConcept C127313418 @default.
- W4310692012 hasConcept C13280743 @default.
- W4310692012 hasConcept C142724271 @default.
- W4310692012 hasConcept C14331020 @default.
- W4310692012 hasConcept C153294291 @default.
- W4310692012 hasConcept C157517311 @default.
- W4310692012 hasConcept C183688256 @default.
- W4310692012 hasConcept C187691185 @default.
- W4310692012 hasConcept C18903297 @default.
- W4310692012 hasConcept C205649164 @default.
- W4310692012 hasConcept C2775835988 @default.
- W4310692012 hasConcept C2776133958 @default.
- W4310692012 hasConcept C2780648208 @default.
- W4310692012 hasConcept C2983008078 @default.
- W4310692012 hasConcept C39432304 @default.
- W4310692012 hasConcept C4792198 @default.
- W4310692012 hasConcept C49204034 @default.
- W4310692012 hasConcept C59822182 @default.
- W4310692012 hasConcept C71924100 @default.
- W4310692012 hasConcept C86803240 @default.
- W4310692012 hasConcept C89736061 @default.
- W4310692012 hasConcept C91586092 @default.
- W4310692012 hasConceptScore W4310692012C100970517 @default.
- W4310692012 hasConceptScore W4310692012C107054158 @default.
- W4310692012 hasConceptScore W4310692012C110872660 @default.
- W4310692012 hasConceptScore W4310692012C127313418 @default.
- W4310692012 hasConceptScore W4310692012C13280743 @default.
- W4310692012 hasConceptScore W4310692012C142724271 @default.
- W4310692012 hasConceptScore W4310692012C14331020 @default.
- W4310692012 hasConceptScore W4310692012C153294291 @default.
- W4310692012 hasConceptScore W4310692012C157517311 @default.
- W4310692012 hasConceptScore W4310692012C183688256 @default.
- W4310692012 hasConceptScore W4310692012C187691185 @default.
- W4310692012 hasConceptScore W4310692012C18903297 @default.
- W4310692012 hasConceptScore W4310692012C205649164 @default.
- W4310692012 hasConceptScore W4310692012C2775835988 @default.
- W4310692012 hasConceptScore W4310692012C2776133958 @default.
- W4310692012 hasConceptScore W4310692012C2780648208 @default.
- W4310692012 hasConceptScore W4310692012C2983008078 @default.
- W4310692012 hasConceptScore W4310692012C39432304 @default.
- W4310692012 hasConceptScore W4310692012C4792198 @default.
- W4310692012 hasConceptScore W4310692012C49204034 @default.
- W4310692012 hasConceptScore W4310692012C59822182 @default.
- W4310692012 hasConceptScore W4310692012C71924100 @default.
- W4310692012 hasConceptScore W4310692012C86803240 @default.
- W4310692012 hasConceptScore W4310692012C89736061 @default.
- W4310692012 hasConceptScore W4310692012C91586092 @default.
- W4310692012 hasLocation W43106920121 @default.
- W4310692012 hasOpenAccess W4310692012 @default.
- W4310692012 hasPrimaryLocation W43106920121 @default.
- W4310692012 hasRelatedWork W1933164979 @default.
- W4310692012 hasRelatedWork W2076438153 @default.
- W4310692012 hasRelatedWork W2107686664 @default.
- W4310692012 hasRelatedWork W2161549781 @default.
- W4310692012 hasRelatedWork W2169002664 @default.
- W4310692012 hasRelatedWork W2361385967 @default.
- W4310692012 hasRelatedWork W2377085562 @default.
- W4310692012 hasRelatedWork W3151903044 @default.
- W4310692012 hasRelatedWork W4200229308 @default.
- W4310692012 hasRelatedWork W4321599693 @default.
- W4310692012 isParatext "false" @default.
- W4310692012 isRetracted "false" @default.
- W4310692012 workType "peer-review" @default.