Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310692017> ?p ?o ?g. }
- W4310692017 endingPage "841" @default.
- W4310692017 startingPage "808" @default.
- W4310692017 abstract "The development of big data and social media has driven large-scale group decision making (LSGDM) to merge with social networks and focus on individual behavioral factors. Following this trend, this paper develops a novel LSGDM consensus model that explores and manages the meso-scale structure among experts using free texts to express their opinions under social network settings. In the proposed approach, firstly the sentiment analysis is adopted to extract preferences over alternatives provided by experts and the preferences are further converted into distributed linguistic preference relation matrices. Then a core-periphery detection method for the social network constructed based on the newly defined distance measure for linguistic distribution assessments is proposed. After that, expert weights are derived by an optimization model that maximizes the expert reliability based on consistency and node centrality. Moreover, considering reference dependence and bounded rationality features of members among the detected network, a prospect theory-based two-stage consensus model is developed to improve group consensus systematically and gradually. Finally, a case study regarding life science investments is provided to illustrate the usefulness of our proposal. The convergence of the proposed model is proven by theoretical and simulation analysis. Comparative analysis reveals the features and advantages of our model." @default.
- W4310692017 created "2022-12-15" @default.
- W4310692017 creator A5005270331 @default.
- W4310692017 creator A5005899189 @default.
- W4310692017 creator A5009797333 @default.
- W4310692017 creator A5043372458 @default.
- W4310692017 creator A5058687568 @default.
- W4310692017 creator A5077623520 @default.
- W4310692017 creator A5082255460 @default.
- W4310692017 date "2023-04-01" @default.
- W4310692017 modified "2023-10-16" @default.
- W4310692017 title "A sentiment analysis-based two-stage consensus model of large-scale group with core-periphery structure" @default.
- W4310692017 cites W1970510720 @default.
- W4310692017 cites W2013414525 @default.
- W4310692017 cites W2015953751 @default.
- W4310692017 cites W2027218152 @default.
- W4310692017 cites W2032109089 @default.
- W4310692017 cites W2041946752 @default.
- W4310692017 cites W2042508843 @default.
- W4310692017 cites W2071460834 @default.
- W4310692017 cites W2072688741 @default.
- W4310692017 cites W2118785619 @default.
- W4310692017 cites W2131681506 @default.
- W4310692017 cites W2200383562 @default.
- W4310692017 cites W2472441091 @default.
- W4310692017 cites W2777155893 @default.
- W4310692017 cites W2789784111 @default.
- W4310692017 cites W2885574655 @default.
- W4310692017 cites W2887761828 @default.
- W4310692017 cites W2901288482 @default.
- W4310692017 cites W2905446659 @default.
- W4310692017 cites W2951133391 @default.
- W4310692017 cites W2954058846 @default.
- W4310692017 cites W2954235980 @default.
- W4310692017 cites W2972094994 @default.
- W4310692017 cites W2976638149 @default.
- W4310692017 cites W2977782679 @default.
- W4310692017 cites W2987410285 @default.
- W4310692017 cites W3000254848 @default.
- W4310692017 cites W3003801295 @default.
- W4310692017 cites W3007161230 @default.
- W4310692017 cites W3011865677 @default.
- W4310692017 cites W3033058385 @default.
- W4310692017 cites W3041790237 @default.
- W4310692017 cites W3046166631 @default.
- W4310692017 cites W3087738021 @default.
- W4310692017 cites W3102247132 @default.
- W4310692017 cites W3103433038 @default.
- W4310692017 cites W3107078885 @default.
- W4310692017 cites W3159830007 @default.
- W4310692017 cites W3162077801 @default.
- W4310692017 cites W3172923194 @default.
- W4310692017 cites W3174087464 @default.
- W4310692017 cites W3191785481 @default.
- W4310692017 cites W3201419456 @default.
- W4310692017 cites W4220753524 @default.
- W4310692017 cites W4282000587 @default.
- W4310692017 cites W4304014715 @default.
- W4310692017 cites W4306405915 @default.
- W4310692017 cites W4308359889 @default.
- W4310692017 doi "https://doi.org/10.1016/j.ins.2022.11.147" @default.
- W4310692017 hasPublicationYear "2023" @default.
- W4310692017 type Work @default.
- W4310692017 citedByCount "4" @default.
- W4310692017 countsByYear W43106920172023 @default.
- W4310692017 crossrefType "journal-article" @default.
- W4310692017 hasAuthorship W4310692017A5005270331 @default.
- W4310692017 hasAuthorship W4310692017A5005899189 @default.
- W4310692017 hasAuthorship W4310692017A5009797333 @default.
- W4310692017 hasAuthorship W4310692017A5043372458 @default.
- W4310692017 hasAuthorship W4310692017A5058687568 @default.
- W4310692017 hasAuthorship W4310692017A5077623520 @default.
- W4310692017 hasAuthorship W4310692017A5082255460 @default.
- W4310692017 hasConcept C114614502 @default.
- W4310692017 hasConcept C114713312 @default.
- W4310692017 hasConcept C119857082 @default.
- W4310692017 hasConcept C121332964 @default.
- W4310692017 hasConcept C124101348 @default.
- W4310692017 hasConcept C136764020 @default.
- W4310692017 hasConcept C154945302 @default.
- W4310692017 hasConcept C15744967 @default.
- W4310692017 hasConcept C162324750 @default.
- W4310692017 hasConcept C163258240 @default.
- W4310692017 hasConcept C197129107 @default.
- W4310692017 hasConcept C20701700 @default.
- W4310692017 hasConcept C2164484 @default.
- W4310692017 hasConcept C23123220 @default.
- W4310692017 hasConcept C2776436953 @default.
- W4310692017 hasConcept C2777303404 @default.
- W4310692017 hasConcept C33923547 @default.
- W4310692017 hasConcept C41008148 @default.
- W4310692017 hasConcept C43214815 @default.
- W4310692017 hasConcept C50522688 @default.
- W4310692017 hasConcept C518677369 @default.
- W4310692017 hasConcept C53811970 @default.
- W4310692017 hasConcept C62520636 @default.
- W4310692017 hasConcept C76155785 @default.
- W4310692017 hasConcept C77805123 @default.