Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310693661> ?p ?o ?g. }
- W4310693661 endingPage "119787" @default.
- W4310693661 startingPage "119787" @default.
- W4310693661 abstract "Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease characterized by the appearance of focal lesions across the central nervous system. The discrimination of acute from chronic MS lesions may yield novel biomarkers of inflammatory disease activity which may support patient management in the clinical setting and provide endpoints in clinical trials. On a single timepoint and in the absence of a prior reference scan, existing methods for acute lesion detection rely on the segmentation of hyperintense foci on post-gadolinium T1-weighted magnetic resonance imaging (MRI), which may underestimate recent acute lesion activity. In this paper, we aim to improve the sensitivity of acute MS lesion detection in the single-timepoint setting, by developing a novel machine learning approach for the automatic detection of acute MS lesions, using single-timepoint conventional non-contrast T1- and T2-weighted brain MRI. The MRI input data are supplemented via the use of a convolutional neural network generating lesion-free reconstructions from original lesion-present scans using image inpainting. A multi-objective statistical ranking module evaluates the relevance of textural radiomic features from the core and periphery of lesion sites, compared within lesion-free versus lesion-present image pairs. Then, an ensemble classifier is optimized through a recursive loop seeking consensus both in the feature space (via a greedy feature-pruning approach) and in the classifier space (via model selection repeated after each pruning operation). This leads to the identification of a compact textural signature characterizing lesion phenotype. On the patch-level task of acute versus chronic MS lesion classification, our method achieves a balanced accuracy in the range of 74.3-74.6% on fully external validation cohorts." @default.
- W4310693661 created "2022-12-15" @default.
- W4310693661 creator A5000943393 @default.
- W4310693661 creator A5007615278 @default.
- W4310693661 creator A5008598861 @default.
- W4310693661 creator A5010051023 @default.
- W4310693661 creator A5019171923 @default.
- W4310693661 creator A5023035078 @default.
- W4310693661 creator A5035104330 @default.
- W4310693661 creator A5047787310 @default.
- W4310693661 creator A5057351159 @default.
- W4310693661 creator A5077223134 @default.
- W4310693661 creator A5078043343 @default.
- W4310693661 date "2023-01-01" @default.
- W4310693661 modified "2023-10-05" @default.
- W4310693661 title "Single-timepoint low-dimensional characterization and classification of acute versus chronic multiple sclerosis lesions using machine learning" @default.
- W4310693661 cites W1480697639 @default.
- W4310693661 cites W1763205699 @default.
- W4310693661 cites W1984357202 @default.
- W4310693661 cites W1989979887 @default.
- W4310693661 cites W1991463855 @default.
- W4310693661 cites W2006322519 @default.
- W4310693661 cites W2007271588 @default.
- W4310693661 cites W2022122681 @default.
- W4310693661 cites W2024751716 @default.
- W4310693661 cites W2025009638 @default.
- W4310693661 cites W2040454936 @default.
- W4310693661 cites W2053983047 @default.
- W4310693661 cites W2056721442 @default.
- W4310693661 cites W2066319437 @default.
- W4310693661 cites W2067353441 @default.
- W4310693661 cites W2076924176 @default.
- W4310693661 cites W2094395422 @default.
- W4310693661 cites W2096440477 @default.
- W4310693661 cites W2101520046 @default.
- W4310693661 cites W2128739912 @default.
- W4310693661 cites W2141185335 @default.
- W4310693661 cites W2149869171 @default.
- W4310693661 cites W2156582774 @default.
- W4310693661 cites W2157552088 @default.
- W4310693661 cites W2157848968 @default.
- W4310693661 cites W2161422007 @default.
- W4310693661 cites W2170128009 @default.
- W4310693661 cites W2174661749 @default.
- W4310693661 cites W2175642482 @default.
- W4310693661 cites W2180241394 @default.
- W4310693661 cites W2197604055 @default.
- W4310693661 cites W2330965779 @default.
- W4310693661 cites W2561881161 @default.
- W4310693661 cites W2591088516 @default.
- W4310693661 cites W2767128594 @default.
- W4310693661 cites W2769568471 @default.
- W4310693661 cites W2788015554 @default.
- W4310693661 cites W2791315675 @default.
- W4310693661 cites W2793526309 @default.
- W4310693661 cites W2891202007 @default.
- W4310693661 cites W2908629632 @default.
- W4310693661 cites W2922239950 @default.
- W4310693661 cites W2994834352 @default.
- W4310693661 cites W2998789541 @default.
- W4310693661 cites W3026705055 @default.
- W4310693661 cites W3045086986 @default.
- W4310693661 cites W3093429277 @default.
- W4310693661 cites W3096831136 @default.
- W4310693661 cites W3101769997 @default.
- W4310693661 cites W3171747481 @default.
- W4310693661 cites W3196595545 @default.
- W4310693661 cites W3197030491 @default.
- W4310693661 cites W429766147 @default.
- W4310693661 doi "https://doi.org/10.1016/j.neuroimage.2022.119787" @default.
- W4310693661 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36473647" @default.
- W4310693661 hasPublicationYear "2023" @default.
- W4310693661 type Work @default.
- W4310693661 citedByCount "4" @default.
- W4310693661 countsByYear W43106936612023 @default.
- W4310693661 crossrefType "journal-article" @default.
- W4310693661 hasAuthorship W4310693661A5000943393 @default.
- W4310693661 hasAuthorship W4310693661A5007615278 @default.
- W4310693661 hasAuthorship W4310693661A5008598861 @default.
- W4310693661 hasAuthorship W4310693661A5010051023 @default.
- W4310693661 hasAuthorship W4310693661A5019171923 @default.
- W4310693661 hasAuthorship W4310693661A5023035078 @default.
- W4310693661 hasAuthorship W4310693661A5035104330 @default.
- W4310693661 hasAuthorship W4310693661A5047787310 @default.
- W4310693661 hasAuthorship W4310693661A5057351159 @default.
- W4310693661 hasAuthorship W4310693661A5077223134 @default.
- W4310693661 hasAuthorship W4310693661A5078043343 @default.
- W4310693661 hasBestOaLocation W43106936611 @default.
- W4310693661 hasConcept C118552586 @default.
- W4310693661 hasConcept C126838900 @default.
- W4310693661 hasConcept C142724271 @default.
- W4310693661 hasConcept C143409427 @default.
- W4310693661 hasConcept C153180895 @default.
- W4310693661 hasConcept C154945302 @default.
- W4310693661 hasConcept C2780640218 @default.
- W4310693661 hasConcept C2781156865 @default.
- W4310693661 hasConcept C41008148 @default.
- W4310693661 hasConcept C71924100 @default.