Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310705874> ?p ?o ?g. }
- W4310705874 endingPage "996" @default.
- W4310705874 startingPage "990" @default.
- W4310705874 abstract "We introduce DeepNash, an autonomous agent that plays the imperfect information game Stratego at a human expert level. Stratego is one of the few iconic board games that artificial intelligence (AI) has not yet mastered. It is a game characterized by a twin challenge: It requires long-term strategic thinking as in chess, but it also requires dealing with imperfect information as in poker. The technique underpinning DeepNash uses a game-theoretic, model-free deep reinforcement learning method, without search, that learns to master Stratego through self-play from scratch. DeepNash beat existing state-of-the-art AI methods in Stratego and achieved a year-to-date (2022) and all-time top-three ranking on the Gravon games platform, competing with human expert players." @default.
- W4310705874 created "2022-12-16" @default.
- W4310705874 creator A5000081835 @default.
- W4310705874 creator A5005349213 @default.
- W4310705874 creator A5006533777 @default.
- W4310705874 creator A5008547992 @default.
- W4310705874 creator A5018555885 @default.
- W4310705874 creator A5019669511 @default.
- W4310705874 creator A5024394972 @default.
- W4310705874 creator A5027641103 @default.
- W4310705874 creator A5036712234 @default.
- W4310705874 creator A5040179074 @default.
- W4310705874 creator A5041881668 @default.
- W4310705874 creator A5043984392 @default.
- W4310705874 creator A5045681608 @default.
- W4310705874 creator A5046052093 @default.
- W4310705874 creator A5048592673 @default.
- W4310705874 creator A5049332971 @default.
- W4310705874 creator A5049659586 @default.
- W4310705874 creator A5050359774 @default.
- W4310705874 creator A5051968502 @default.
- W4310705874 creator A5052169592 @default.
- W4310705874 creator A5053301405 @default.
- W4310705874 creator A5056707583 @default.
- W4310705874 creator A5058299981 @default.
- W4310705874 creator A5058922471 @default.
- W4310705874 creator A5061261923 @default.
- W4310705874 creator A5064779744 @default.
- W4310705874 creator A5072903215 @default.
- W4310705874 creator A5073631643 @default.
- W4310705874 creator A5075375399 @default.
- W4310705874 creator A5081026564 @default.
- W4310705874 creator A5085971810 @default.
- W4310705874 creator A5087602040 @default.
- W4310705874 creator A5090501025 @default.
- W4310705874 creator A5091771290 @default.
- W4310705874 date "2022-12-02" @default.
- W4310705874 modified "2023-10-10" @default.
- W4310705874 title "Mastering the game of Stratego with model-free multiagent reinforcement learning" @default.
- W4310705874 cites W1192553058 @default.
- W4310705874 cites W1415442047 @default.
- W4310705874 cites W1964137737 @default.
- W4310705874 cites W2006791053 @default.
- W4310705874 cites W2097477220 @default.
- W4310705874 cites W2126776273 @default.
- W4310705874 cites W2194775991 @default.
- W4310705874 cites W2342437035 @default.
- W4310705874 cites W2565639579 @default.
- W4310705874 cites W2574978968 @default.
- W4310705874 cites W2766447205 @default.
- W4310705874 cites W2773381986 @default.
- W4310705874 cites W2787259794 @default.
- W4310705874 cites W2810602713 @default.
- W4310705874 cites W2899222380 @default.
- W4310705874 cites W2902907165 @default.
- W4310705874 cites W2911296969 @default.
- W4310705874 cites W2960876848 @default.
- W4310705874 cites W2982316857 @default.
- W4310705874 cites W4210870706 @default.
- W4310705874 cites W4234761190 @default.
- W4310705874 cites W4362203700 @default.
- W4310705874 cites W999150765 @default.
- W4310705874 doi "https://doi.org/10.1126/science.add4679" @default.
- W4310705874 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36454847" @default.
- W4310705874 hasPublicationYear "2022" @default.
- W4310705874 type Work @default.
- W4310705874 citedByCount "19" @default.
- W4310705874 countsByYear W43107058742022 @default.
- W4310705874 countsByYear W43107058742023 @default.
- W4310705874 crossrefType "journal-article" @default.
- W4310705874 hasAuthorship W4310705874A5000081835 @default.
- W4310705874 hasAuthorship W4310705874A5005349213 @default.
- W4310705874 hasAuthorship W4310705874A5006533777 @default.
- W4310705874 hasAuthorship W4310705874A5008547992 @default.
- W4310705874 hasAuthorship W4310705874A5018555885 @default.
- W4310705874 hasAuthorship W4310705874A5019669511 @default.
- W4310705874 hasAuthorship W4310705874A5024394972 @default.
- W4310705874 hasAuthorship W4310705874A5027641103 @default.
- W4310705874 hasAuthorship W4310705874A5036712234 @default.
- W4310705874 hasAuthorship W4310705874A5040179074 @default.
- W4310705874 hasAuthorship W4310705874A5041881668 @default.
- W4310705874 hasAuthorship W4310705874A5043984392 @default.
- W4310705874 hasAuthorship W4310705874A5045681608 @default.
- W4310705874 hasAuthorship W4310705874A5046052093 @default.
- W4310705874 hasAuthorship W4310705874A5048592673 @default.
- W4310705874 hasAuthorship W4310705874A5049332971 @default.
- W4310705874 hasAuthorship W4310705874A5049659586 @default.
- W4310705874 hasAuthorship W4310705874A5050359774 @default.
- W4310705874 hasAuthorship W4310705874A5051968502 @default.
- W4310705874 hasAuthorship W4310705874A5052169592 @default.
- W4310705874 hasAuthorship W4310705874A5053301405 @default.
- W4310705874 hasAuthorship W4310705874A5056707583 @default.
- W4310705874 hasAuthorship W4310705874A5058299981 @default.
- W4310705874 hasAuthorship W4310705874A5058922471 @default.
- W4310705874 hasAuthorship W4310705874A5061261923 @default.
- W4310705874 hasAuthorship W4310705874A5064779744 @default.
- W4310705874 hasAuthorship W4310705874A5072903215 @default.
- W4310705874 hasAuthorship W4310705874A5073631643 @default.