Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310726579> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4310726579 endingPage "104904" @default.
- W4310726579 startingPage "104904" @default.
- W4310726579 abstract "Stratigraphy in the crust is widely anisotropic. Anisotropic parameters play an important role from inversion and migration to stratigraphic interpretation and reservoir characterization. At present, under conventional geophysical methods, whether logging or seismic, do not directly measure anisotropic parameters. That is, it is difficult to obtain anisotropic parameters. However, there is a certain correlation between anisotropy parameters and other kinds of logging data, so that anisotropy parameters can be calculated from other logging curves. In view of the complexity of this relationship, a machine learning approach can be used. So, we propose a deep multiple triangular kernel extreme learning machine optimized by the flower pollination algorithm (FPA-D-MK-ELM), which is used to predict the anisotropy parameters of the strata. The accuracy and stability of the FPA-D-MK-ELM algorithm are verified by comparing the algorithm before and after optimization." @default.
- W4310726579 created "2022-12-16" @default.
- W4310726579 creator A5008565392 @default.
- W4310726579 creator A5017240907 @default.
- W4310726579 creator A5022990773 @default.
- W4310726579 creator A5040153479 @default.
- W4310726579 creator A5056469679 @default.
- W4310726579 creator A5065220600 @default.
- W4310726579 date "2023-02-01" @default.
- W4310726579 modified "2023-10-09" @default.
- W4310726579 title "Predicting anisotropic parameters of strata by deep multiple triangular kernel extreme learning machine optimized by flower pollination algorithm" @default.
- W4310726579 cites W1136074057 @default.
- W4310726579 cites W1986280275 @default.
- W4310726579 cites W1993717606 @default.
- W4310726579 cites W2000839252 @default.
- W4310726579 cites W2024060531 @default.
- W4310726579 cites W2039361386 @default.
- W4310726579 cites W2083575259 @default.
- W4310726579 cites W2098274171 @default.
- W4310726579 cites W2104263968 @default.
- W4310726579 cites W2111072639 @default.
- W4310726579 cites W2125813080 @default.
- W4310726579 cites W2157595416 @default.
- W4310726579 cites W2169619350 @default.
- W4310726579 cites W2170832205 @default.
- W4310726579 cites W2207655426 @default.
- W4310726579 cites W2512811316 @default.
- W4310726579 cites W2776252545 @default.
- W4310726579 cites W3000425646 @default.
- W4310726579 cites W3013849573 @default.
- W4310726579 cites W3048528067 @default.
- W4310726579 cites W3106627905 @default.
- W4310726579 cites W3131639001 @default.
- W4310726579 cites W4280494801 @default.
- W4310726579 cites W4293054278 @default.
- W4310726579 doi "https://doi.org/10.1016/j.jappgeo.2022.104904" @default.
- W4310726579 hasPublicationYear "2023" @default.
- W4310726579 type Work @default.
- W4310726579 citedByCount "3" @default.
- W4310726579 countsByYear W43107265792023 @default.
- W4310726579 crossrefType "journal-article" @default.
- W4310726579 hasAuthorship W4310726579A5008565392 @default.
- W4310726579 hasAuthorship W4310726579A5017240907 @default.
- W4310726579 hasAuthorship W4310726579A5022990773 @default.
- W4310726579 hasAuthorship W4310726579A5040153479 @default.
- W4310726579 hasAuthorship W4310726579A5056469679 @default.
- W4310726579 hasAuthorship W4310726579A5065220600 @default.
- W4310726579 hasConcept C11413529 @default.
- W4310726579 hasConcept C114614502 @default.
- W4310726579 hasConcept C120665830 @default.
- W4310726579 hasConcept C121332964 @default.
- W4310726579 hasConcept C127313418 @default.
- W4310726579 hasConcept C154945302 @default.
- W4310726579 hasConcept C165205528 @default.
- W4310726579 hasConcept C1893757 @default.
- W4310726579 hasConcept C2780150128 @default.
- W4310726579 hasConcept C33923547 @default.
- W4310726579 hasConcept C41008148 @default.
- W4310726579 hasConcept C50644808 @default.
- W4310726579 hasConcept C74193536 @default.
- W4310726579 hasConcept C77928131 @default.
- W4310726579 hasConcept C85725439 @default.
- W4310726579 hasConceptScore W4310726579C11413529 @default.
- W4310726579 hasConceptScore W4310726579C114614502 @default.
- W4310726579 hasConceptScore W4310726579C120665830 @default.
- W4310726579 hasConceptScore W4310726579C121332964 @default.
- W4310726579 hasConceptScore W4310726579C127313418 @default.
- W4310726579 hasConceptScore W4310726579C154945302 @default.
- W4310726579 hasConceptScore W4310726579C165205528 @default.
- W4310726579 hasConceptScore W4310726579C1893757 @default.
- W4310726579 hasConceptScore W4310726579C2780150128 @default.
- W4310726579 hasConceptScore W4310726579C33923547 @default.
- W4310726579 hasConceptScore W4310726579C41008148 @default.
- W4310726579 hasConceptScore W4310726579C50644808 @default.
- W4310726579 hasConceptScore W4310726579C74193536 @default.
- W4310726579 hasConceptScore W4310726579C77928131 @default.
- W4310726579 hasConceptScore W4310726579C85725439 @default.
- W4310726579 hasFunder F4320321001 @default.
- W4310726579 hasFunder F4320322143 @default.
- W4310726579 hasFunder F4320335777 @default.
- W4310726579 hasLocation W43107265791 @default.
- W4310726579 hasOpenAccess W4310726579 @default.
- W4310726579 hasPrimaryLocation W43107265791 @default.
- W4310726579 hasRelatedWork W2003149479 @default.
- W4310726579 hasRelatedWork W2048963143 @default.
- W4310726579 hasRelatedWork W2330780946 @default.
- W4310726579 hasRelatedWork W2333108041 @default.
- W4310726579 hasRelatedWork W2749372762 @default.
- W4310726579 hasRelatedWork W2969890106 @default.
- W4310726579 hasRelatedWork W3002504458 @default.
- W4310726579 hasRelatedWork W3134233996 @default.
- W4310726579 hasRelatedWork W3178845845 @default.
- W4310726579 hasRelatedWork W4310726579 @default.
- W4310726579 hasVolume "209" @default.
- W4310726579 isParatext "false" @default.
- W4310726579 isRetracted "false" @default.
- W4310726579 workType "article" @default.