Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310731246> ?p ?o ?g. }
- W4310731246 endingPage "111819" @default.
- W4310731246 startingPage "111819" @default.
- W4310731246 abstract "We introduce a machine-learning framework named statistics-informed neural network (SINN) for learning stochastic dynamics from data. This new architecture was theoretically inspired by a universal approximation theorem for stochastic systems, which we introduce in this paper, and the projection-operator formalism for stochastic modeling. We devise mechanisms for training the neural network model to reproduce the correct statistical behavior of a target stochastic process. Numerical simulation results demonstrate that a well-trained SINN can reliably approximate both Markovian and non-Markovian stochastic dynamics. We demonstrate the applicability of SINN to coarse-graining problems and the modeling of transition dynamics. Furthermore, we show that the obtained reduced-order model can be trained on temporally coarse-grained data and hence is well suited for rare-event simulations." @default.
- W4310731246 created "2022-12-16" @default.
- W4310731246 creator A5040471064 @default.
- W4310731246 creator A5048594796 @default.
- W4310731246 creator A5065500285 @default.
- W4310731246 date "2023-02-01" @default.
- W4310731246 modified "2023-10-16" @default.
- W4310731246 title "Learning stochastic dynamics with statistics-informed neural network" @default.
- W4310731246 cites W1959895834 @default.
- W4310731246 cites W1976068300 @default.
- W4310731246 cites W1988529738 @default.
- W4310731246 cites W1989134385 @default.
- W4310731246 cites W2002266200 @default.
- W4310731246 cites W2030607685 @default.
- W4310731246 cites W2064675550 @default.
- W4310731246 cites W2080908214 @default.
- W4310731246 cites W2099490136 @default.
- W4310731246 cites W2104049095 @default.
- W4310731246 cites W2116341502 @default.
- W4310731246 cites W2154875389 @default.
- W4310731246 cites W2163845030 @default.
- W4310731246 cites W2219814777 @default.
- W4310731246 cites W2748220448 @default.
- W4310731246 cites W2890968382 @default.
- W4310731246 cites W2963512172 @default.
- W4310731246 cites W2963838606 @default.
- W4310731246 cites W2979313281 @default.
- W4310731246 cites W2996008180 @default.
- W4310731246 cites W3011147100 @default.
- W4310731246 cites W3034372977 @default.
- W4310731246 cites W3034632709 @default.
- W4310731246 cites W3041682155 @default.
- W4310731246 cites W3041887065 @default.
- W4310731246 cites W3101676536 @default.
- W4310731246 cites W3184364599 @default.
- W4310731246 cites W3206241734 @default.
- W4310731246 cites W4251668531 @default.
- W4310731246 doi "https://doi.org/10.1016/j.jcp.2022.111819" @default.
- W4310731246 hasPublicationYear "2023" @default.
- W4310731246 type Work @default.
- W4310731246 citedByCount "3" @default.
- W4310731246 countsByYear W43107312462023 @default.
- W4310731246 crossrefType "journal-article" @default.
- W4310731246 hasAuthorship W4310731246A5040471064 @default.
- W4310731246 hasAuthorship W4310731246A5048594796 @default.
- W4310731246 hasAuthorship W4310731246A5065500285 @default.
- W4310731246 hasBestOaLocation W43107312462 @default.
- W4310731246 hasConcept C105795698 @default.
- W4310731246 hasConcept C111919701 @default.
- W4310731246 hasConcept C119857082 @default.
- W4310731246 hasConcept C142362112 @default.
- W4310731246 hasConcept C147168706 @default.
- W4310731246 hasConcept C153349607 @default.
- W4310731246 hasConcept C154945302 @default.
- W4310731246 hasConcept C159886148 @default.
- W4310731246 hasConcept C177774035 @default.
- W4310731246 hasConcept C2777317252 @default.
- W4310731246 hasConcept C33923547 @default.
- W4310731246 hasConcept C41008148 @default.
- W4310731246 hasConcept C50644808 @default.
- W4310731246 hasConcept C558565934 @default.
- W4310731246 hasConcept C73301696 @default.
- W4310731246 hasConcept C8272713 @default.
- W4310731246 hasConcept C86582703 @default.
- W4310731246 hasConceptScore W4310731246C105795698 @default.
- W4310731246 hasConceptScore W4310731246C111919701 @default.
- W4310731246 hasConceptScore W4310731246C119857082 @default.
- W4310731246 hasConceptScore W4310731246C142362112 @default.
- W4310731246 hasConceptScore W4310731246C147168706 @default.
- W4310731246 hasConceptScore W4310731246C153349607 @default.
- W4310731246 hasConceptScore W4310731246C154945302 @default.
- W4310731246 hasConceptScore W4310731246C159886148 @default.
- W4310731246 hasConceptScore W4310731246C177774035 @default.
- W4310731246 hasConceptScore W4310731246C2777317252 @default.
- W4310731246 hasConceptScore W4310731246C33923547 @default.
- W4310731246 hasConceptScore W4310731246C41008148 @default.
- W4310731246 hasConceptScore W4310731246C50644808 @default.
- W4310731246 hasConceptScore W4310731246C558565934 @default.
- W4310731246 hasConceptScore W4310731246C73301696 @default.
- W4310731246 hasConceptScore W4310731246C8272713 @default.
- W4310731246 hasConceptScore W4310731246C86582703 @default.
- W4310731246 hasLocation W43107312461 @default.
- W4310731246 hasLocation W43107312462 @default.
- W4310731246 hasOpenAccess W4310731246 @default.
- W4310731246 hasPrimaryLocation W43107312461 @default.
- W4310731246 hasRelatedWork W1544020935 @default.
- W4310731246 hasRelatedWork W1592089735 @default.
- W4310731246 hasRelatedWork W1975147165 @default.
- W4310731246 hasRelatedWork W2036906245 @default.
- W4310731246 hasRelatedWork W2075210876 @default.
- W4310731246 hasRelatedWork W2148454247 @default.
- W4310731246 hasRelatedWork W2386387936 @default.
- W4310731246 hasRelatedWork W3199255997 @default.
- W4310731246 hasRelatedWork W4221153213 @default.
- W4310731246 hasRelatedWork W1629725936 @default.
- W4310731246 hasVolume "474" @default.
- W4310731246 isParatext "false" @default.
- W4310731246 isRetracted "false" @default.