Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310732044> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4310732044 abstract "Indoor localization has gained popularity in recent years. Various technologies have been proposed, but many of them do not give good accuracy without high-cost equipment. However, the Wi-Fi signal-based fingerprinting technique is widely employed for indoor locations because of its simplicity and low hardware requirements. Nevertheless, the Received Signal Strength Indicator (RSSI) values are affected by random fluctuations caused by fading and multi-path phenomena, resulting in decreased accuracy. In this paper, we propose indoor localization using Machine Learning (ML) algorithms such as Random Forest (RF), Extreme Gradient Boosting (XGBoost), K-Nearest Neighbors (KNN), and Support-Vector Machine (SVM) combine with a Recursive Least Squares (RLS) filter to increase the accuracy. The first method involves the use of ML algorithms to build an indoor positioning model. The second approach is to apply the RLS filter to reduce the noise in the data as the environment changes. The performance of these methods is evaluated through extensive real-time indoor experiments. We found that the proposed approach is an improvement over the state-of-the-art and recently published work." @default.
- W4310732044 created "2022-12-16" @default.
- W4310732044 creator A5007062524 @default.
- W4310732044 creator A5019808950 @default.
- W4310732044 creator A5019939069 @default.
- W4310732044 creator A5026852083 @default.
- W4310732044 creator A5036212477 @default.
- W4310732044 creator A5039330377 @default.
- W4310732044 creator A5056539583 @default.
- W4310732044 date "2022-11-22" @default.
- W4310732044 modified "2023-10-08" @default.
- W4310732044 title "An adapted machine learning algorithm based-Fingerprints using RLS to improve indoor Wi-fi localization systems" @default.
- W4310732044 cites W1954066267 @default.
- W4310732044 cites W2028082528 @default.
- W4310732044 cites W2041740728 @default.
- W4310732044 cites W2054551089 @default.
- W4310732044 cites W2181675000 @default.
- W4310732044 cites W2538535315 @default.
- W4310732044 cites W2550856709 @default.
- W4310732044 cites W2616734353 @default.
- W4310732044 cites W2622655125 @default.
- W4310732044 cites W2765818497 @default.
- W4310732044 cites W2807582929 @default.
- W4310732044 cites W2809832199 @default.
- W4310732044 cites W2890707138 @default.
- W4310732044 cites W2899052090 @default.
- W4310732044 cites W2901944976 @default.
- W4310732044 cites W2912837751 @default.
- W4310732044 cites W2915736028 @default.
- W4310732044 cites W2937031311 @default.
- W4310732044 cites W2965052638 @default.
- W4310732044 cites W2995733411 @default.
- W4310732044 cites W2996165197 @default.
- W4310732044 cites W3109070915 @default.
- W4310732044 cites W3113790718 @default.
- W4310732044 cites W3116465878 @default.
- W4310732044 cites W3144468345 @default.
- W4310732044 cites W3171883076 @default.
- W4310732044 cites W4255751390 @default.
- W4310732044 cites W2971232721 @default.
- W4310732044 doi "https://doi.org/10.1109/elecom54934.2022.9965236" @default.
- W4310732044 hasPublicationYear "2022" @default.
- W4310732044 type Work @default.
- W4310732044 citedByCount "0" @default.
- W4310732044 crossrefType "proceedings-article" @default.
- W4310732044 hasAuthorship W4310732044A5007062524 @default.
- W4310732044 hasAuthorship W4310732044A5019808950 @default.
- W4310732044 hasAuthorship W4310732044A5019939069 @default.
- W4310732044 hasAuthorship W4310732044A5026852083 @default.
- W4310732044 hasAuthorship W4310732044A5036212477 @default.
- W4310732044 hasAuthorship W4310732044A5039330377 @default.
- W4310732044 hasAuthorship W4310732044A5056539583 @default.
- W4310732044 hasConcept C102248274 @default.
- W4310732044 hasConcept C106131492 @default.
- W4310732044 hasConcept C11413529 @default.
- W4310732044 hasConcept C119857082 @default.
- W4310732044 hasConcept C12267149 @default.
- W4310732044 hasConcept C145249878 @default.
- W4310732044 hasConcept C154945302 @default.
- W4310732044 hasConcept C169258074 @default.
- W4310732044 hasConcept C31972630 @default.
- W4310732044 hasConcept C41008148 @default.
- W4310732044 hasConcept C46686674 @default.
- W4310732044 hasConcept C57273362 @default.
- W4310732044 hasConcept C79403827 @default.
- W4310732044 hasConcept C81978471 @default.
- W4310732044 hasConceptScore W4310732044C102248274 @default.
- W4310732044 hasConceptScore W4310732044C106131492 @default.
- W4310732044 hasConceptScore W4310732044C11413529 @default.
- W4310732044 hasConceptScore W4310732044C119857082 @default.
- W4310732044 hasConceptScore W4310732044C12267149 @default.
- W4310732044 hasConceptScore W4310732044C145249878 @default.
- W4310732044 hasConceptScore W4310732044C154945302 @default.
- W4310732044 hasConceptScore W4310732044C169258074 @default.
- W4310732044 hasConceptScore W4310732044C31972630 @default.
- W4310732044 hasConceptScore W4310732044C41008148 @default.
- W4310732044 hasConceptScore W4310732044C46686674 @default.
- W4310732044 hasConceptScore W4310732044C57273362 @default.
- W4310732044 hasConceptScore W4310732044C79403827 @default.
- W4310732044 hasConceptScore W4310732044C81978471 @default.
- W4310732044 hasFunder F4320319949 @default.
- W4310732044 hasLocation W43107320441 @default.
- W4310732044 hasOpenAccess W4310732044 @default.
- W4310732044 hasPrimaryLocation W43107320441 @default.
- W4310732044 hasRelatedWork W1996541855 @default.
- W4310732044 hasRelatedWork W2979979539 @default.
- W4310732044 hasRelatedWork W3004897296 @default.
- W4310732044 hasRelatedWork W3127425528 @default.
- W4310732044 hasRelatedWork W3195168932 @default.
- W4310732044 hasRelatedWork W3204641204 @default.
- W4310732044 hasRelatedWork W4205958290 @default.
- W4310732044 hasRelatedWork W4293069612 @default.
- W4310732044 hasRelatedWork W4304142064 @default.
- W4310732044 hasRelatedWork W4311106074 @default.
- W4310732044 isParatext "false" @default.
- W4310732044 isRetracted "false" @default.
- W4310732044 workType "article" @default.