Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310758091> ?p ?o ?g. }
- W4310758091 endingPage "100214" @default.
- W4310758091 startingPage "100214" @default.
- W4310758091 abstract "Mesoporous graphitic activated carbon (MGAC) was synthesized using inexpensive Peltophorum pterocarpum leaf as a biomass precursor by a simple and efficient method at 550 °C. As prepared MGAC was exhibited mesoporous nature, high surface area as with high adsorption capacity for removal of synthetic dyes as well as industrial effluents. The complete formation of MGAC has been characterized by different analytical techniques such as X-Ray Diffraction (XRD), Raman, Field Emission Scanning Electron Microscopy (FE-SEM), High Resolution Transmission Electron Microscopy (HR-TEM), Energy Dispersive X-ray Analysis (EDAX), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) surface area analysis, Thermogravimetric Analysis (TGA) and the associated Differential Thermal Analysis (DTA). The FE-SEM and HR-TEM images relieved that the presence of an enormous amount of pores and a large specific area for the adsorption of dyes. And also, BET analysis showed 881 m2/g of surface area along with mesopores diameter of 2-6 nm respectively. The XRD and Raman data showed as prepared MGAC in graphitic nature. Further, the MGAC has exhibited good absorption capacity towards acidic dyes such as 868.28 mg/g for Acid blue 113 (AB113) and 151 mg/g for Acid blue 9 (AB9). And also, exhibited towards basic dyes such as 170.10 mg/g for Rhodamine B (RB), 221.81 mg/g for Safranin O (SO) and 272.66 mg/g for Malachite Green (MG)) respectively. Moreover, the optimum MGAC adsorbent dose was found 0.18 g, 0.03 g, 0.06 g, 0.1 g & 0.12 g for AB9, AB113, SO, RB and MG respectively. The equilibrium was attained at 180 min. for all the dyes. Additionally, adsorption of all the dyes followed the Langmuir adsorption isotherm by best fitting of equilibrium as regression coefficient of R2= 0.99, which is confirmed the monolayer coverage of dye molecules on MGAC. Furthermore, the adsorption kinetics data tracked the pseudo second order. In addition, the thermodynamic studies reveled that adsorption is spontaneous as well endothermic and might be chemisorption in nature. Finally, 0.5 g of MGAC displayed tremendous capability for the removal of mixture of synthetic dyes (each dye con. is 6 × 10−4 M) as well industrial effluents were removed with 0.1 g of MGAC. Comparative study about other adsorbents showed reasonable capacity for selected both acid and basic dyes over single MGAC adsorbent. Besides, the sustainability was exhibited with 0.03 g of MGAC through remarkable stability and reusability up to 5 cycles of run. The adsorption mechanism explained based on synergetic interactions of hydrogen bonding, π-π interactions and electrostatic interactions through effect of pH. Therefore, complete results advised that MGAC is a prominent adsorbent for efficient removal of both acidic and basic dyes as well industrial effluents present in the wastewater." @default.
- W4310758091 created "2022-12-17" @default.
- W4310758091 creator A5005289406 @default.
- W4310758091 creator A5009132860 @default.
- W4310758091 creator A5009856143 @default.
- W4310758091 creator A5034021657 @default.
- W4310758091 creator A5039326414 @default.
- W4310758091 date "2023-02-01" @default.
- W4310758091 modified "2023-10-16" @default.
- W4310758091 title "Sustainable mesoporous graphitic activated carbon as biosorbent for efficient adsorption of acidic and basic dyes from wastewater: Equilibrium, kinetics and thermodynamic studies" @default.
- W4310758091 cites W1971614623 @default.
- W4310758091 cites W1977724039 @default.
- W4310758091 cites W1986022969 @default.
- W4310758091 cites W1990062247 @default.
- W4310758091 cites W1999570359 @default.
- W4310758091 cites W1999805527 @default.
- W4310758091 cites W2001776155 @default.
- W4310758091 cites W2009335653 @default.
- W4310758091 cites W2010244246 @default.
- W4310758091 cites W2012401276 @default.
- W4310758091 cites W2021980788 @default.
- W4310758091 cites W2028499970 @default.
- W4310758091 cites W2029581826 @default.
- W4310758091 cites W2040697085 @default.
- W4310758091 cites W2048747373 @default.
- W4310758091 cites W2049253476 @default.
- W4310758091 cites W2052536106 @default.
- W4310758091 cites W2053589825 @default.
- W4310758091 cites W2054140745 @default.
- W4310758091 cites W2055515770 @default.
- W4310758091 cites W2055564142 @default.
- W4310758091 cites W2056998049 @default.
- W4310758091 cites W2059240265 @default.
- W4310758091 cites W2060794439 @default.
- W4310758091 cites W2063527481 @default.
- W4310758091 cites W2085069726 @default.
- W4310758091 cites W2093449847 @default.
- W4310758091 cites W2094317444 @default.
- W4310758091 cites W2154182586 @default.
- W4310758091 cites W2164777866 @default.
- W4310758091 cites W2165445805 @default.
- W4310758091 cites W2171286175 @default.
- W4310758091 cites W2206481176 @default.
- W4310758091 cites W2285036527 @default.
- W4310758091 cites W2293697882 @default.
- W4310758091 cites W2410356118 @default.
- W4310758091 cites W2724948025 @default.
- W4310758091 cites W2788376308 @default.
- W4310758091 cites W2809669167 @default.
- W4310758091 cites W2809880805 @default.
- W4310758091 cites W2828357953 @default.
- W4310758091 cites W2907029610 @default.
- W4310758091 cites W2908476285 @default.
- W4310758091 cites W2923919459 @default.
- W4310758091 cites W2995250597 @default.
- W4310758091 cites W2997272966 @default.
- W4310758091 cites W3000570492 @default.
- W4310758091 cites W3011075614 @default.
- W4310758091 cites W3033996137 @default.
- W4310758091 cites W3119824136 @default.
- W4310758091 cites W3132335166 @default.
- W4310758091 cites W3159768975 @default.
- W4310758091 cites W3171638132 @default.
- W4310758091 cites W3185383098 @default.
- W4310758091 cites W3217439684 @default.
- W4310758091 cites W4205447219 @default.
- W4310758091 cites W4224262175 @default.
- W4310758091 cites W4225264163 @default.
- W4310758091 doi "https://doi.org/10.1016/j.hazadv.2022.100214" @default.
- W4310758091 hasPublicationYear "2023" @default.
- W4310758091 type Work @default.
- W4310758091 citedByCount "4" @default.
- W4310758091 countsByYear W43107580912023 @default.
- W4310758091 crossrefType "journal-article" @default.
- W4310758091 hasAuthorship W4310758091A5005289406 @default.
- W4310758091 hasAuthorship W4310758091A5009132860 @default.
- W4310758091 hasAuthorship W4310758091A5009856143 @default.
- W4310758091 hasAuthorship W4310758091A5034021657 @default.
- W4310758091 hasAuthorship W4310758091A5039326414 @default.
- W4310758091 hasBestOaLocation W43107580911 @default.
- W4310758091 hasConcept C120665830 @default.
- W4310758091 hasConcept C121332964 @default.
- W4310758091 hasConcept C127413603 @default.
- W4310758091 hasConcept C13965031 @default.
- W4310758091 hasConcept C150394285 @default.
- W4310758091 hasConcept C150581940 @default.
- W4310758091 hasConcept C159985019 @default.
- W4310758091 hasConcept C160892712 @default.
- W4310758091 hasConcept C161790260 @default.
- W4310758091 hasConcept C178790620 @default.
- W4310758091 hasConcept C185592680 @default.
- W4310758091 hasConcept C192562407 @default.
- W4310758091 hasConcept C26771246 @default.
- W4310758091 hasConcept C2776002898 @default.
- W4310758091 hasConcept C2779647737 @default.
- W4310758091 hasConcept C2780704308 @default.
- W4310758091 hasConcept C27923307 @default.
- W4310758091 hasConcept C40003534 @default.