Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310773732> ?p ?o ?g. }
- W4310773732 endingPage "e2245141" @default.
- W4310773732 startingPage "e2245141" @default.
- W4310773732 abstract "Epithelial ovarian carcinoma is heterogeneous and classified according to the World Health Organization Tumour Classification, which is based on histologic features and molecular alterations. Preoperative prediction of the histologic subtypes could aid in clinical management and disease prognostication.To assess the value of radiomics based on contrast-enhanced computed tomography (CT) in differentiating histologic subtypes of epithelial ovarian carcinoma in multicenter data sets.In this diagnostic study, 665 patients with histologically confirmed epithelial ovarian carcinoma were retrospectively recruited from 4 centers (Hong Kong, Guangdong Province of China, and Seoul, South Korea) between January 1, 2012, and February 28, 2022. The patients were randomly divided into a training cohort (n = 532) and a testing cohort (n = 133) with a ratio of 8:2. This process was repeated 100 times. Tumor segmentation was manually delineated on each section of contrast-enhanced CT images to encompass the entire tumor. The Mann-Whitney U test and voted least absolute shrinkage and selection operator were performed for feature reduction and selection. Selected features were used to build the logistic regression model for differentiating high-grade serous carcinoma and non-high-grade serous carcinoma.Contrast-enhanced CT-based radiomics.Intraobserver and interobserver reproducibility of tumor segmentation were measured by Dice similarity coefficients. The diagnostic efficiency of the model was assessed by receiver operating characteristic curve and area under the curve.In this study, 665 female patients (mean [SD] age, 53.6 [10.9] years) with epithelial ovarian carcinoma were enrolled and analyzed. The Dice similarity coefficients of intraobserver and interobserver were all greater than 0.80. Twenty radiomic features were selected for modeling. The areas under the curve of the logistic regression model in differentiating high-grade serous carcinoma and non-high-grade serous carcinoma were 0.837 (95% CI, 0.835-0.838) for the training cohort and 0.836 (95% CI, 0.833-0.840) for the testing cohort.In this diagnostic study, radiomic features extracted from contrast-enhanced CT were useful in the classification of histologic subtypes in epithelial ovarian carcinoma. Intraobserver and interobserver reproducibility of tumor segmentation was excellent. The proposed logistic regression model offered excellent discriminative ability among histologic subtypes." @default.
- W4310773732 created "2022-12-17" @default.
- W4310773732 creator A5008631820 @default.
- W4310773732 creator A5009980151 @default.
- W4310773732 creator A5029495151 @default.
- W4310773732 creator A5029652383 @default.
- W4310773732 creator A5033672198 @default.
- W4310773732 creator A5034147095 @default.
- W4310773732 creator A5035221740 @default.
- W4310773732 creator A5035739657 @default.
- W4310773732 creator A5042956973 @default.
- W4310773732 creator A5069570838 @default.
- W4310773732 date "2022-12-05" @default.
- W4310773732 modified "2023-10-17" @default.
- W4310773732 title "Computed Tomographic Radiomics in Differentiating Histologic Subtypes of Epithelial Ovarian Carcinoma" @default.
- W4310773732 cites W1486956459 @default.
- W4310773732 cites W1917085074 @default.
- W4310773732 cites W1980276147 @default.
- W4310773732 cites W1994563300 @default.
- W4310773732 cites W1996066317 @default.
- W4310773732 cites W2026616100 @default.
- W4310773732 cites W2052295501 @default.
- W4310773732 cites W2052507258 @default.
- W4310773732 cites W2068729757 @default.
- W4310773732 cites W2103004421 @default.
- W4310773732 cites W2127890285 @default.
- W4310773732 cites W2159252302 @default.
- W4310773732 cites W2174661749 @default.
- W4310773732 cites W2529607059 @default.
- W4310773732 cites W2530952499 @default.
- W4310773732 cites W2763355946 @default.
- W4310773732 cites W2767128594 @default.
- W4310773732 cites W2802934060 @default.
- W4310773732 cites W2891523846 @default.
- W4310773732 cites W2895629545 @default.
- W4310773732 cites W2936844981 @default.
- W4310773732 cites W2955104111 @default.
- W4310773732 cites W2965399740 @default.
- W4310773732 cites W3031119901 @default.
- W4310773732 cites W3035201165 @default.
- W4310773732 cites W3046810415 @default.
- W4310773732 cites W3047861005 @default.
- W4310773732 cites W3089117938 @default.
- W4310773732 cites W3099043519 @default.
- W4310773732 cites W3119005666 @default.
- W4310773732 cites W3119860550 @default.
- W4310773732 cites W3119911061 @default.
- W4310773732 cites W3127866002 @default.
- W4310773732 cites W3149998818 @default.
- W4310773732 cites W3164706617 @default.
- W4310773732 cites W3169283283 @default.
- W4310773732 cites W3176291587 @default.
- W4310773732 cites W3197322151 @default.
- W4310773732 cites W4213191375 @default.
- W4310773732 cites W4237938703 @default.
- W4310773732 cites W4247875404 @default.
- W4310773732 cites W4248956213 @default.
- W4310773732 cites W4250265893 @default.
- W4310773732 cites W4251598249 @default.
- W4310773732 cites W4292528167 @default.
- W4310773732 doi "https://doi.org/10.1001/jamanetworkopen.2022.45141" @default.
- W4310773732 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36469315" @default.
- W4310773732 hasPublicationYear "2022" @default.
- W4310773732 type Work @default.
- W4310773732 citedByCount "8" @default.
- W4310773732 countsByYear W43107737322023 @default.
- W4310773732 crossrefType "journal-article" @default.
- W4310773732 hasAuthorship W4310773732A5008631820 @default.
- W4310773732 hasAuthorship W4310773732A5009980151 @default.
- W4310773732 hasAuthorship W4310773732A5029495151 @default.
- W4310773732 hasAuthorship W4310773732A5029652383 @default.
- W4310773732 hasAuthorship W4310773732A5033672198 @default.
- W4310773732 hasAuthorship W4310773732A5034147095 @default.
- W4310773732 hasAuthorship W4310773732A5035221740 @default.
- W4310773732 hasAuthorship W4310773732A5035739657 @default.
- W4310773732 hasAuthorship W4310773732A5042956973 @default.
- W4310773732 hasAuthorship W4310773732A5069570838 @default.
- W4310773732 hasBestOaLocation W43107737321 @default.
- W4310773732 hasConcept C121608353 @default.
- W4310773732 hasConcept C126322002 @default.
- W4310773732 hasConcept C126838900 @default.
- W4310773732 hasConcept C142724271 @default.
- W4310773732 hasConcept C150173356 @default.
- W4310773732 hasConcept C2777546739 @default.
- W4310773732 hasConcept C2777632260 @default.
- W4310773732 hasConcept C2778559731 @default.
- W4310773732 hasConcept C2780427987 @default.
- W4310773732 hasConcept C2989005 @default.
- W4310773732 hasConcept C3019054536 @default.
- W4310773732 hasConcept C58471807 @default.
- W4310773732 hasConcept C71924100 @default.
- W4310773732 hasConceptScore W4310773732C121608353 @default.
- W4310773732 hasConceptScore W4310773732C126322002 @default.
- W4310773732 hasConceptScore W4310773732C126838900 @default.
- W4310773732 hasConceptScore W4310773732C142724271 @default.
- W4310773732 hasConceptScore W4310773732C150173356 @default.
- W4310773732 hasConceptScore W4310773732C2777546739 @default.
- W4310773732 hasConceptScore W4310773732C2777632260 @default.