Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310790883> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4310790883 endingPage "109236" @default.
- W4310790883 startingPage "109236" @default.
- W4310790883 abstract "Network embedding has shown promising performance in real-world applications. The network embedding typically lies in a continuous vector space, where storage and computation costs are high, especially in large-scale applications. This paper proposes more compact representation to fulfill the gap. The proposed discrete network embedding (DNE) leverages hash code to represent node in Hamming space. The Hamming similarity between hash codes approximates the ground-truth similarity. The embedding and classifier are jointly learned to improve compactness and discrimination. The proposed multi-class classifier is further constrained to be discrete to expedite classification. In addition, this paper further extends DNE and proposes deep discrete attributed network embedding (DDANE) to learn compact deep embedding from more informative attributed network. From the perspective of generalized signal smoothing, the proposed DDANE trains an improved graph convolutional network autoencoder to effectively leverage node attribute and network structure. Extensive experiments on node classification demonstrate the proposed methods exhibit lower storage and computational complexity than state-of-the-art network embedding methods, and achieve satisfactory accuracy." @default.
- W4310790883 created "2022-12-17" @default.
- W4310790883 creator A5008056593 @default.
- W4310790883 creator A5026283201 @default.
- W4310790883 creator A5060723344 @default.
- W4310790883 creator A5061132796 @default.
- W4310790883 creator A5064797575 @default.
- W4310790883 creator A5083822275 @default.
- W4310790883 date "2023-04-01" @default.
- W4310790883 modified "2023-09-23" @default.
- W4310790883 title "Compact network embedding for fast node classification" @default.
- W4310790883 cites W2411707397 @default.
- W4310790883 cites W2593190442 @default.
- W4310790883 cites W2905056852 @default.
- W4310790883 cites W2963224980 @default.
- W4310790883 cites W3014035003 @default.
- W4310790883 cites W3023043494 @default.
- W4310790883 cites W3082753413 @default.
- W4310790883 cites W3096561660 @default.
- W4310790883 cites W3186432075 @default.
- W4310790883 cites W3206542027 @default.
- W4310790883 cites W3208922547 @default.
- W4310790883 cites W4210257598 @default.
- W4310790883 cites W4210907929 @default.
- W4310790883 cites W4224138390 @default.
- W4310790883 cites W4226102968 @default.
- W4310790883 doi "https://doi.org/10.1016/j.patcog.2022.109236" @default.
- W4310790883 hasPublicationYear "2023" @default.
- W4310790883 type Work @default.
- W4310790883 citedByCount "2" @default.
- W4310790883 countsByYear W43107908832023 @default.
- W4310790883 crossrefType "journal-article" @default.
- W4310790883 hasAuthorship W4310790883A5008056593 @default.
- W4310790883 hasAuthorship W4310790883A5026283201 @default.
- W4310790883 hasAuthorship W4310790883A5060723344 @default.
- W4310790883 hasAuthorship W4310790883A5061132796 @default.
- W4310790883 hasAuthorship W4310790883A5064797575 @default.
- W4310790883 hasAuthorship W4310790883A5083822275 @default.
- W4310790883 hasConcept C101738243 @default.
- W4310790883 hasConcept C108583219 @default.
- W4310790883 hasConcept C11413529 @default.
- W4310790883 hasConcept C153180895 @default.
- W4310790883 hasConcept C154945302 @default.
- W4310790883 hasConcept C157125643 @default.
- W4310790883 hasConcept C2779494224 @default.
- W4310790883 hasConcept C31972630 @default.
- W4310790883 hasConcept C3770464 @default.
- W4310790883 hasConcept C38652104 @default.
- W4310790883 hasConcept C41008148 @default.
- W4310790883 hasConcept C41608201 @default.
- W4310790883 hasConcept C57273362 @default.
- W4310790883 hasConcept C73150493 @default.
- W4310790883 hasConcept C80444323 @default.
- W4310790883 hasConcept C81363708 @default.
- W4310790883 hasConcept C95623464 @default.
- W4310790883 hasConcept C99138194 @default.
- W4310790883 hasConceptScore W4310790883C101738243 @default.
- W4310790883 hasConceptScore W4310790883C108583219 @default.
- W4310790883 hasConceptScore W4310790883C11413529 @default.
- W4310790883 hasConceptScore W4310790883C153180895 @default.
- W4310790883 hasConceptScore W4310790883C154945302 @default.
- W4310790883 hasConceptScore W4310790883C157125643 @default.
- W4310790883 hasConceptScore W4310790883C2779494224 @default.
- W4310790883 hasConceptScore W4310790883C31972630 @default.
- W4310790883 hasConceptScore W4310790883C3770464 @default.
- W4310790883 hasConceptScore W4310790883C38652104 @default.
- W4310790883 hasConceptScore W4310790883C41008148 @default.
- W4310790883 hasConceptScore W4310790883C41608201 @default.
- W4310790883 hasConceptScore W4310790883C57273362 @default.
- W4310790883 hasConceptScore W4310790883C73150493 @default.
- W4310790883 hasConceptScore W4310790883C80444323 @default.
- W4310790883 hasConceptScore W4310790883C81363708 @default.
- W4310790883 hasConceptScore W4310790883C95623464 @default.
- W4310790883 hasConceptScore W4310790883C99138194 @default.
- W4310790883 hasLocation W43107908831 @default.
- W4310790883 hasOpenAccess W4310790883 @default.
- W4310790883 hasPrimaryLocation W43107908831 @default.
- W4310790883 hasRelatedWork W2003558525 @default.
- W4310790883 hasRelatedWork W2418353079 @default.
- W4310790883 hasRelatedWork W2964383635 @default.
- W4310790883 hasRelatedWork W2981938443 @default.
- W4310790883 hasRelatedWork W2995914718 @default.
- W4310790883 hasRelatedWork W3178288425 @default.
- W4310790883 hasRelatedWork W4221015625 @default.
- W4310790883 hasRelatedWork W4226048133 @default.
- W4310790883 hasRelatedWork W4322096710 @default.
- W4310790883 hasRelatedWork W564581980 @default.
- W4310790883 hasVolume "136" @default.
- W4310790883 isParatext "false" @default.
- W4310790883 isRetracted "false" @default.
- W4310790883 workType "article" @default.