Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310793434> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4310793434 abstract "Growing traffic demand at junctions causes major traffic congestion, which can have a detrimental impact on the economy, health, and other aspects. This necessitates intelligent traffic management, which makes traffic prediction a vital task for intelligent transportation systems. We propose a method based on machine learning algorithms capable of predicting traffic flow at intersections, in which we split our dataset according to the four junctions, also we normalize and differentiate these data, then we implemented 11 algorithms based on Recurrent Neural Networks (GRU), Extra Trees Regressor (ET), Light Gradient Boosting Machine (LIGHTGBM), Random Forest Regressor (RF), Linear Regression (LR), Bayesian Ridge (BR), Gradient Boosting Regressor (GBR), K Neighbors Regressor (KNN), Decision Tree Regressor (DT), Huber Regressor (HUBER), Ridge Regression (RIDGE). Finally, we used two measures, RMSE and MAE, to evaluate these models in order to select the most efficient model for each part of the data set." @default.
- W4310793434 created "2022-12-18" @default.
- W4310793434 creator A5000776466 @default.
- W4310793434 creator A5023015541 @default.
- W4310793434 creator A5049963805 @default.
- W4310793434 date "2022-10-26" @default.
- W4310793434 modified "2023-10-02" @default.
- W4310793434 title "Predictive System of Traffic Congestion based on Machine Learning" @default.
- W4310793434 cites W1600918697 @default.
- W4310793434 cites W2606070053 @default.
- W4310793434 cites W2888088750 @default.
- W4310793434 cites W2891705404 @default.
- W4310793434 cites W2896398456 @default.
- W4310793434 cites W2911964244 @default.
- W4310793434 cites W2922073769 @default.
- W4310793434 cites W2963563705 @default.
- W4310793434 cites W2971270198 @default.
- W4310793434 cites W3006446123 @default.
- W4310793434 cites W3014865388 @default.
- W4310793434 cites W3033641787 @default.
- W4310793434 cites W3040275518 @default.
- W4310793434 cites W3045104252 @default.
- W4310793434 cites W3089744907 @default.
- W4310793434 cites W3154228815 @default.
- W4310793434 cites W3209643259 @default.
- W4310793434 cites W3211022409 @default.
- W4310793434 cites W4200027252 @default.
- W4310793434 cites W4244230525 @default.
- W4310793434 cites W4248439738 @default.
- W4310793434 doi "https://doi.org/10.1109/wincom55661.2022.9966448" @default.
- W4310793434 hasPublicationYear "2022" @default.
- W4310793434 type Work @default.
- W4310793434 citedByCount "1" @default.
- W4310793434 countsByYear W43107934342023 @default.
- W4310793434 crossrefType "proceedings-article" @default.
- W4310793434 hasAuthorship W4310793434A5000776466 @default.
- W4310793434 hasAuthorship W4310793434A5023015541 @default.
- W4310793434 hasAuthorship W4310793434A5049963805 @default.
- W4310793434 hasConcept C105795698 @default.
- W4310793434 hasConcept C119857082 @default.
- W4310793434 hasConcept C124101348 @default.
- W4310793434 hasConcept C127413603 @default.
- W4310793434 hasConcept C139945424 @default.
- W4310793434 hasConcept C147176958 @default.
- W4310793434 hasConcept C154945302 @default.
- W4310793434 hasConcept C169258074 @default.
- W4310793434 hasConcept C205649164 @default.
- W4310793434 hasConcept C32277403 @default.
- W4310793434 hasConcept C33923547 @default.
- W4310793434 hasConcept C41008148 @default.
- W4310793434 hasConcept C45942800 @default.
- W4310793434 hasConcept C46686674 @default.
- W4310793434 hasConcept C47796450 @default.
- W4310793434 hasConcept C58640448 @default.
- W4310793434 hasConcept C70153297 @default.
- W4310793434 hasConcept C83546350 @default.
- W4310793434 hasConcept C84525736 @default.
- W4310793434 hasConceptScore W4310793434C105795698 @default.
- W4310793434 hasConceptScore W4310793434C119857082 @default.
- W4310793434 hasConceptScore W4310793434C124101348 @default.
- W4310793434 hasConceptScore W4310793434C127413603 @default.
- W4310793434 hasConceptScore W4310793434C139945424 @default.
- W4310793434 hasConceptScore W4310793434C147176958 @default.
- W4310793434 hasConceptScore W4310793434C154945302 @default.
- W4310793434 hasConceptScore W4310793434C169258074 @default.
- W4310793434 hasConceptScore W4310793434C205649164 @default.
- W4310793434 hasConceptScore W4310793434C32277403 @default.
- W4310793434 hasConceptScore W4310793434C33923547 @default.
- W4310793434 hasConceptScore W4310793434C41008148 @default.
- W4310793434 hasConceptScore W4310793434C45942800 @default.
- W4310793434 hasConceptScore W4310793434C46686674 @default.
- W4310793434 hasConceptScore W4310793434C47796450 @default.
- W4310793434 hasConceptScore W4310793434C58640448 @default.
- W4310793434 hasConceptScore W4310793434C70153297 @default.
- W4310793434 hasConceptScore W4310793434C83546350 @default.
- W4310793434 hasConceptScore W4310793434C84525736 @default.
- W4310793434 hasLocation W43107934341 @default.
- W4310793434 hasOpenAccess W4310793434 @default.
- W4310793434 hasPrimaryLocation W43107934341 @default.
- W4310793434 hasRelatedWork W3100297620 @default.
- W4310793434 hasRelatedWork W3200719183 @default.
- W4310793434 hasRelatedWork W3201348321 @default.
- W4310793434 hasRelatedWork W3204021295 @default.
- W4310793434 hasRelatedWork W4206556944 @default.
- W4310793434 hasRelatedWork W4288057626 @default.
- W4310793434 hasRelatedWork W4293069612 @default.
- W4310793434 hasRelatedWork W4296081764 @default.
- W4310793434 hasRelatedWork W4298012357 @default.
- W4310793434 hasRelatedWork W46572615 @default.
- W4310793434 isParatext "false" @default.
- W4310793434 isRetracted "false" @default.
- W4310793434 workType "article" @default.