Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310794022> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4310794022 endingPage "100105" @default.
- W4310794022 startingPage "100105" @default.
- W4310794022 abstract "Real-time estimation of thelength of mixed oil in a multi-product pipeline is a critical task during batch transportation. In previous studies, various predictive models have been built while they merely depended on a single predictive model to fulfill the regression work, and model performance severely deteriorated with the presence of outliers. The Student’s t mixture regression (SMR) model can identify multimode characteristics and reduce the impact of outliers. However, ignorance of physics knowledge and the simplistic assumption of a linear relationship between variables in the SMR may lead to unsatisfactory performance. In addition, the possible singularity problem can make the SMR fails to work. Motivated by resolving these issues, this paper proposes a physics-informed SMR modeling method by integrating the physics knowledge and the SMR to develop a robust hybrid predictive model for predicting the mixed oil length in a multi-product pipeline. Case studies are carried out on the measured dataset to demonstrate the effectiveness and advantages of the proposed new modeling method compared to the model entirely based on the SMR method and two state-of-the-art predictive models." @default.
- W4310794022 created "2022-12-18" @default.
- W4310794022 creator A5010738468 @default.
- W4310794022 creator A5030891034 @default.
- W4310794022 creator A5042551057 @default.
- W4310794022 creator A5044970157 @default.
- W4310794022 creator A5055099183 @default.
- W4310794022 creator A5059717821 @default.
- W4310794022 date "2023-03-01" @default.
- W4310794022 modified "2023-09-30" @default.
- W4310794022 title "Physics-informed Student’s t mixture regression model applied to predict mixed oil length" @default.
- W4310794022 cites W1969050958 @default.
- W4310794022 cites W1969833588 @default.
- W4310794022 cites W1985007429 @default.
- W4310794022 cites W1986730242 @default.
- W4310794022 cites W1991106858 @default.
- W4310794022 cites W2070461420 @default.
- W4310794022 cites W2079692514 @default.
- W4310794022 cites W2088482564 @default.
- W4310794022 cites W2138975957 @default.
- W4310794022 cites W2319940424 @default.
- W4310794022 cites W2806625504 @default.
- W4310794022 cites W2885441463 @default.
- W4310794022 cites W2888125058 @default.
- W4310794022 cites W2889017122 @default.
- W4310794022 cites W2895868598 @default.
- W4310794022 cites W2919235887 @default.
- W4310794022 cites W2973726220 @default.
- W4310794022 cites W3008910394 @default.
- W4310794022 cites W3009820620 @default.
- W4310794022 cites W3100799996 @default.
- W4310794022 cites W3147307062 @default.
- W4310794022 cites W3154474102 @default.
- W4310794022 cites W4200394217 @default.
- W4310794022 doi "https://doi.org/10.1016/j.jpse.2022.100105" @default.
- W4310794022 hasPublicationYear "2023" @default.
- W4310794022 type Work @default.
- W4310794022 citedByCount "0" @default.
- W4310794022 crossrefType "journal-article" @default.
- W4310794022 hasAuthorship W4310794022A5010738468 @default.
- W4310794022 hasAuthorship W4310794022A5030891034 @default.
- W4310794022 hasAuthorship W4310794022A5042551057 @default.
- W4310794022 hasAuthorship W4310794022A5044970157 @default.
- W4310794022 hasAuthorship W4310794022A5055099183 @default.
- W4310794022 hasAuthorship W4310794022A5059717821 @default.
- W4310794022 hasBestOaLocation W43107940221 @default.
- W4310794022 hasConcept C105795698 @default.
- W4310794022 hasConcept C119857082 @default.
- W4310794022 hasConcept C149782125 @default.
- W4310794022 hasConcept C152877465 @default.
- W4310794022 hasConcept C154945302 @default.
- W4310794022 hasConcept C199360897 @default.
- W4310794022 hasConcept C2524010 @default.
- W4310794022 hasConcept C33923547 @default.
- W4310794022 hasConcept C41008148 @default.
- W4310794022 hasConcept C43521106 @default.
- W4310794022 hasConcept C48921125 @default.
- W4310794022 hasConcept C79337645 @default.
- W4310794022 hasConcept C83546350 @default.
- W4310794022 hasConcept C90673727 @default.
- W4310794022 hasConceptScore W4310794022C105795698 @default.
- W4310794022 hasConceptScore W4310794022C119857082 @default.
- W4310794022 hasConceptScore W4310794022C149782125 @default.
- W4310794022 hasConceptScore W4310794022C152877465 @default.
- W4310794022 hasConceptScore W4310794022C154945302 @default.
- W4310794022 hasConceptScore W4310794022C199360897 @default.
- W4310794022 hasConceptScore W4310794022C2524010 @default.
- W4310794022 hasConceptScore W4310794022C33923547 @default.
- W4310794022 hasConceptScore W4310794022C41008148 @default.
- W4310794022 hasConceptScore W4310794022C43521106 @default.
- W4310794022 hasConceptScore W4310794022C48921125 @default.
- W4310794022 hasConceptScore W4310794022C79337645 @default.
- W4310794022 hasConceptScore W4310794022C83546350 @default.
- W4310794022 hasConceptScore W4310794022C90673727 @default.
- W4310794022 hasIssue "1" @default.
- W4310794022 hasLocation W43107940221 @default.
- W4310794022 hasOpenAccess W4310794022 @default.
- W4310794022 hasPrimaryLocation W43107940221 @default.
- W4310794022 hasRelatedWork W2018697919 @default.
- W4310794022 hasRelatedWork W2062105804 @default.
- W4310794022 hasRelatedWork W2094290469 @default.
- W4310794022 hasRelatedWork W2325374573 @default.
- W4310794022 hasRelatedWork W2375721435 @default.
- W4310794022 hasRelatedWork W3021457118 @default.
- W4310794022 hasRelatedWork W3122861356 @default.
- W4310794022 hasRelatedWork W4252743528 @default.
- W4310794022 hasRelatedWork W4290879003 @default.
- W4310794022 hasRelatedWork W2738033194 @default.
- W4310794022 hasVolume "3" @default.
- W4310794022 isParatext "false" @default.
- W4310794022 isRetracted "false" @default.
- W4310794022 workType "article" @default.