Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310794237> ?p ?o ?g. }
- W4310794237 endingPage "101921" @default.
- W4310794237 startingPage "101921" @default.
- W4310794237 abstract "Urban functional zone mapping is essential for providing deeper insights into urban morphology and improving urban planning. The emergence of Volunteered Geographic Information (VGI), which provides abundant semantic data, offers a great opportunity to enrich land use information extracted from remote sensing (RS) images. Taking advantage of very-high-resolution (VHR) images and VGI data, this work proposed a SATL multifeature ensemble learning framework for mapping urban functional zones that integrated 65 features from the shapes of building objects, attributes of points of interest (POIs) tags, locations of cellphone users and textures of VHR images. The dimensionality of SALT features was reduced by the autoencoder, and the compressed features were applied to train the ensemble learning model composed of multiple classifiers for optimizing the urban functional zone classification. The effectiveness of the proposed framework was tested in an urbanized region of Nanchang City. The results indicated that the SALT features considering population dynamics and building shapes are comprehensive and feasible for urban functional zone mapping. The autoencoder has been proven efficient for dimension reduction of the original SALT features as it significantly improves the classification of urban functional zones. Moreover, the ensemble learning outperforms other machine learning models in terms of the accuracy and robustness when dealing with multi-classification tasks." @default.
- W4310794237 created "2022-12-18" @default.
- W4310794237 creator A5002337174 @default.
- W4310794237 creator A5016172737 @default.
- W4310794237 creator A5038805449 @default.
- W4310794237 creator A5040008874 @default.
- W4310794237 creator A5049165867 @default.
- W4310794237 creator A5082582836 @default.
- W4310794237 creator A5083170497 @default.
- W4310794237 date "2023-03-01" @default.
- W4310794237 modified "2023-10-12" @default.
- W4310794237 title "SALT: A multifeature ensemble learning framework for mapping urban functional zones from VGI data and VHR images" @default.
- W4310794237 cites W1157380099 @default.
- W4310794237 cites W1875061881 @default.
- W4310794237 cites W1966178163 @default.
- W4310794237 cites W1966307779 @default.
- W4310794237 cites W1969779781 @default.
- W4310794237 cites W1972631516 @default.
- W4310794237 cites W1981904549 @default.
- W4310794237 cites W2000671760 @default.
- W4310794237 cites W2016227107 @default.
- W4310794237 cites W2047822617 @default.
- W4310794237 cites W2048128407 @default.
- W4310794237 cites W2070534370 @default.
- W4310794237 cites W2096553553 @default.
- W4310794237 cites W2112620321 @default.
- W4310794237 cites W2115993301 @default.
- W4310794237 cites W2159136761 @default.
- W4310794237 cites W2312660048 @default.
- W4310794237 cites W2318680928 @default.
- W4310794237 cites W2517491419 @default.
- W4310794237 cites W2534538876 @default.
- W4310794237 cites W2609570670 @default.
- W4310794237 cites W2613013283 @default.
- W4310794237 cites W2613571842 @default.
- W4310794237 cites W2616294603 @default.
- W4310794237 cites W2736667640 @default.
- W4310794237 cites W2741078791 @default.
- W4310794237 cites W2751833077 @default.
- W4310794237 cites W2754939259 @default.
- W4310794237 cites W2770727026 @default.
- W4310794237 cites W2791260466 @default.
- W4310794237 cites W2796299618 @default.
- W4310794237 cites W2797124408 @default.
- W4310794237 cites W2800993588 @default.
- W4310794237 cites W2802720675 @default.
- W4310794237 cites W2810574214 @default.
- W4310794237 cites W2887417196 @default.
- W4310794237 cites W2898841050 @default.
- W4310794237 cites W2900258210 @default.
- W4310794237 cites W2904703694 @default.
- W4310794237 cites W2905764228 @default.
- W4310794237 cites W2911183593 @default.
- W4310794237 cites W2912586862 @default.
- W4310794237 cites W2917749783 @default.
- W4310794237 cites W2943054785 @default.
- W4310794237 cites W2964579991 @default.
- W4310794237 cites W2970602317 @default.
- W4310794237 cites W2990979713 @default.
- W4310794237 cites W2993303109 @default.
- W4310794237 cites W2994283657 @default.
- W4310794237 cites W3002608077 @default.
- W4310794237 cites W3005596500 @default.
- W4310794237 cites W3014104048 @default.
- W4310794237 cites W3014433460 @default.
- W4310794237 cites W3021383260 @default.
- W4310794237 cites W3023516657 @default.
- W4310794237 cites W3032752459 @default.
- W4310794237 cites W3093262498 @default.
- W4310794237 cites W3095676075 @default.
- W4310794237 cites W3097656351 @default.
- W4310794237 cites W3098067298 @default.
- W4310794237 cites W3120388949 @default.
- W4310794237 cites W3135041244 @default.
- W4310794237 cites W3163513764 @default.
- W4310794237 cites W3187883086 @default.
- W4310794237 cites W3189911029 @default.
- W4310794237 cites W3197943752 @default.
- W4310794237 cites W3209988630 @default.
- W4310794237 cites W3216156171 @default.
- W4310794237 cites W4206197186 @default.
- W4310794237 cites W4254615348 @default.
- W4310794237 cites W4287149202 @default.
- W4310794237 doi "https://doi.org/10.1016/j.compenvurbsys.2022.101921" @default.
- W4310794237 hasPublicationYear "2023" @default.
- W4310794237 type Work @default.
- W4310794237 citedByCount "4" @default.
- W4310794237 countsByYear W43107942372023 @default.
- W4310794237 crossrefType "journal-article" @default.
- W4310794237 hasAuthorship W4310794237A5002337174 @default.
- W4310794237 hasAuthorship W4310794237A5016172737 @default.
- W4310794237 hasAuthorship W4310794237A5038805449 @default.
- W4310794237 hasAuthorship W4310794237A5040008874 @default.
- W4310794237 hasAuthorship W4310794237A5049165867 @default.
- W4310794237 hasAuthorship W4310794237A5082582836 @default.
- W4310794237 hasAuthorship W4310794237A5083170497 @default.
- W4310794237 hasConcept C101738243 @default.
- W4310794237 hasConcept C108583219 @default.