Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310795217> ?p ?o ?g. }
- W4310795217 abstract "Abstract In pavement engineering, cement grouting material is widely used to pour into large void asphalt concrete to prepare semi-flexible composite mixtures. It plays an essential role in the performance of the semi-flexible composite mixture. To meet specific engineering requirements, various additives are mixed into the grouting material to improve the physical and mechanical properties. As a result, the uncertainty of the grouting material is also more significant as the complexity of material composition increases during the material design. It will bring some unknown risks for the engineering application. Hence, it is necessary to quantize the uncertainty during the material design of the grouting material and evaluate the reliability of the material formula. In this study, a novel framework of material design was developed by combing the Multioutput support vector machine (MSVM), Bayesian inference, and laboratory experiments. The MSVM was used to approximate and characterize the complex and nonlinear relationship between the grouting material formula and its properties based on laboratory experiments. The Bayesian inference was adopted to deal with the uncertainty of material design using the Markov Chain Monte Carlo. An optimized formula of the cement grouting material is obtained based on the developed framework. Experimental results show that the optimized formula improves engineering properties and performance stability, especially early strength. The developed framework provides a helpful, valuable, and promising tool for evaluating the reliability of the material design of the grouting material considering the uncertainty." @default.
- W4310795217 created "2022-12-18" @default.
- W4310795217 creator A5021541475 @default.
- W4310795217 creator A5031448999 @default.
- W4310795217 creator A5032764121 @default.
- W4310795217 creator A5036726873 @default.
- W4310795217 creator A5068860545 @default.
- W4310795217 creator A5070378902 @default.
- W4310795217 creator A5086466347 @default.
- W4310795217 date "2022-12-01" @default.
- W4310795217 modified "2023-10-12" @default.
- W4310795217 title "Uncertainty-Based Performance Prediction and Optimization of High-Fluidization Cement Grouting Material Using Machine Learning and Bayesian Inference" @default.
- W4310795217 cites W2046612990 @default.
- W4310795217 cites W2068365903 @default.
- W4310795217 cites W2136446513 @default.
- W4310795217 cites W2162421262 @default.
- W4310795217 cites W2190226824 @default.
- W4310795217 cites W2346337673 @default.
- W4310795217 cites W2747457400 @default.
- W4310795217 cites W2763106571 @default.
- W4310795217 cites W2767101650 @default.
- W4310795217 cites W2803613189 @default.
- W4310795217 cites W2891750563 @default.
- W4310795217 cites W2902919199 @default.
- W4310795217 cites W2904848665 @default.
- W4310795217 cites W2913323966 @default.
- W4310795217 cites W2943048129 @default.
- W4310795217 cites W2965616786 @default.
- W4310795217 cites W2998884936 @default.
- W4310795217 cites W3000038587 @default.
- W4310795217 cites W3000847739 @default.
- W4310795217 cites W3011581520 @default.
- W4310795217 cites W3023045101 @default.
- W4310795217 cites W3093326876 @default.
- W4310795217 cites W3127282356 @default.
- W4310795217 cites W3131816283 @default.
- W4310795217 cites W3132384966 @default.
- W4310795217 cites W3138828002 @default.
- W4310795217 cites W3150253225 @default.
- W4310795217 cites W3179192885 @default.
- W4310795217 cites W3183175807 @default.
- W4310795217 cites W3195838831 @default.
- W4310795217 cites W3205479635 @default.
- W4310795217 cites W4206762220 @default.
- W4310795217 cites W4206999357 @default.
- W4310795217 cites W4212800097 @default.
- W4310795217 cites W4283702604 @default.
- W4310795217 cites W4283758290 @default.
- W4310795217 cites W4285040476 @default.
- W4310795217 cites W628329697 @default.
- W4310795217 doi "https://doi.org/10.1186/s40069-022-00562-4" @default.
- W4310795217 hasPublicationYear "2022" @default.
- W4310795217 type Work @default.
- W4310795217 citedByCount "1" @default.
- W4310795217 countsByYear W43107952172023 @default.
- W4310795217 crossrefType "journal-article" @default.
- W4310795217 hasAuthorship W4310795217A5021541475 @default.
- W4310795217 hasAuthorship W4310795217A5031448999 @default.
- W4310795217 hasAuthorship W4310795217A5032764121 @default.
- W4310795217 hasAuthorship W4310795217A5036726873 @default.
- W4310795217 hasAuthorship W4310795217A5068860545 @default.
- W4310795217 hasAuthorship W4310795217A5070378902 @default.
- W4310795217 hasAuthorship W4310795217A5086466347 @default.
- W4310795217 hasBestOaLocation W43107952171 @default.
- W4310795217 hasConcept C107673813 @default.
- W4310795217 hasConcept C121332964 @default.
- W4310795217 hasConcept C136764020 @default.
- W4310795217 hasConcept C154945302 @default.
- W4310795217 hasConcept C158622935 @default.
- W4310795217 hasConcept C159985019 @default.
- W4310795217 hasConcept C160234255 @default.
- W4310795217 hasConcept C192562407 @default.
- W4310795217 hasConcept C2777152284 @default.
- W4310795217 hasConcept C31555180 @default.
- W4310795217 hasConcept C41008148 @default.
- W4310795217 hasConcept C62520636 @default.
- W4310795217 hasConceptScore W4310795217C107673813 @default.
- W4310795217 hasConceptScore W4310795217C121332964 @default.
- W4310795217 hasConceptScore W4310795217C136764020 @default.
- W4310795217 hasConceptScore W4310795217C154945302 @default.
- W4310795217 hasConceptScore W4310795217C158622935 @default.
- W4310795217 hasConceptScore W4310795217C159985019 @default.
- W4310795217 hasConceptScore W4310795217C160234255 @default.
- W4310795217 hasConceptScore W4310795217C192562407 @default.
- W4310795217 hasConceptScore W4310795217C2777152284 @default.
- W4310795217 hasConceptScore W4310795217C31555180 @default.
- W4310795217 hasConceptScore W4310795217C41008148 @default.
- W4310795217 hasConceptScore W4310795217C62520636 @default.
- W4310795217 hasFunder F4320321001 @default.
- W4310795217 hasIssue "1" @default.
- W4310795217 hasLocation W43107952171 @default.
- W4310795217 hasOpenAccess W4310795217 @default.
- W4310795217 hasPrimaryLocation W43107952171 @default.
- W4310795217 hasRelatedWork W1977289084 @default.
- W4310795217 hasRelatedWork W1998742657 @default.
- W4310795217 hasRelatedWork W2003399919 @default.
- W4310795217 hasRelatedWork W2081382178 @default.
- W4310795217 hasRelatedWork W2407375987 @default.
- W4310795217 hasRelatedWork W2753218748 @default.
- W4310795217 hasRelatedWork W2774409638 @default.