Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310811269> ?p ?o ?g. }
- W4310811269 endingPage "100794" @default.
- W4310811269 startingPage "100794" @default.
- W4310811269 abstract "Porosity is an important indicator of the durability performance of concrete. The objective of this study is to apply machine learning methods to empirically predict the porosity of high-performance concrete containing supplementary cementitious materials. The assembled database for concrete porosity consists of 240 data records, featuring 74 unique concrete mixture designs. The compositional features of concrete include water/cement ratio, fly ash, slag, aggregate content, superplasticizers and curing conditions. The numerical results suggest that gradient boosting trees outperform random forests in terms of their prediction accuracy. XGBoost achieves the best performance with additional regularization over model complexity to prevent overfitting. Compared with the conventional chemo-mechanical model for predicting concrete porosity, the proposed data-driven approach not only overcomes the difficulty in estimating the time-dependent degree of hydration, but also achieves a higher prediction accuracy of R2 = 0.9770, MAPE = 2.97%, and RMSE = 0.431 for porosity (%). The predictor importance plot shows that curing days, water/binder ratio, and aggregate content are the most important predictors of concrete porosity." @default.
- W4310811269 created "2022-12-18" @default.
- W4310811269 creator A5028190666 @default.
- W4310811269 date "2023-03-01" @default.
- W4310811269 modified "2023-10-10" @default.
- W4310811269 title "Prediction of concrete porosity using machine learning" @default.
- W4310811269 cites W1437335841 @default.
- W4310811269 cites W1678356000 @default.
- W4310811269 cites W1985089397 @default.
- W4310811269 cites W1986032897 @default.
- W4310811269 cites W1998253841 @default.
- W4310811269 cites W2007752589 @default.
- W4310811269 cites W2014550598 @default.
- W4310811269 cites W2020893055 @default.
- W4310811269 cites W2021168236 @default.
- W4310811269 cites W2021619026 @default.
- W4310811269 cites W2024000897 @default.
- W4310811269 cites W2031855479 @default.
- W4310811269 cites W2034353886 @default.
- W4310811269 cites W2038415006 @default.
- W4310811269 cites W2040615655 @default.
- W4310811269 cites W2044863747 @default.
- W4310811269 cites W2049476569 @default.
- W4310811269 cites W2050524161 @default.
- W4310811269 cites W2056680342 @default.
- W4310811269 cites W2061061894 @default.
- W4310811269 cites W2061933243 @default.
- W4310811269 cites W2063858690 @default.
- W4310811269 cites W2066703566 @default.
- W4310811269 cites W2070757608 @default.
- W4310811269 cites W2076457099 @default.
- W4310811269 cites W2077526323 @default.
- W4310811269 cites W2078339956 @default.
- W4310811269 cites W20845438 @default.
- W4310811269 cites W2088290448 @default.
- W4310811269 cites W2102851353 @default.
- W4310811269 cites W2113074845 @default.
- W4310811269 cites W2115811794 @default.
- W4310811269 cites W2122380425 @default.
- W4310811269 cites W2152265169 @default.
- W4310811269 cites W2167849100 @default.
- W4310811269 cites W2192203593 @default.
- W4310811269 cites W239705856 @default.
- W4310811269 cites W2541606225 @default.
- W4310811269 cites W2573796313 @default.
- W4310811269 cites W2582587579 @default.
- W4310811269 cites W2583571308 @default.
- W4310811269 cites W2597389234 @default.
- W4310811269 cites W2608146202 @default.
- W4310811269 cites W2893769615 @default.
- W4310811269 cites W2911878404 @default.
- W4310811269 cites W2911964244 @default.
- W4310811269 cites W2912605615 @default.
- W4310811269 cites W2914073813 @default.
- W4310811269 cites W2948056727 @default.
- W4310811269 cites W2955558066 @default.
- W4310811269 cites W3010156620 @default.
- W4310811269 cites W3016003464 @default.
- W4310811269 cites W3038054276 @default.
- W4310811269 cites W3038415525 @default.
- W4310811269 cites W3102476541 @default.
- W4310811269 cites W3134953049 @default.
- W4310811269 cites W3137503852 @default.
- W4310811269 cites W4200624155 @default.
- W4310811269 cites W4212883601 @default.
- W4310811269 cites W4280548161 @default.
- W4310811269 cites W4283732996 @default.
- W4310811269 doi "https://doi.org/10.1016/j.rineng.2022.100794" @default.
- W4310811269 hasPublicationYear "2023" @default.
- W4310811269 type Work @default.
- W4310811269 citedByCount "4" @default.
- W4310811269 countsByYear W43108112692023 @default.
- W4310811269 crossrefType "journal-article" @default.
- W4310811269 hasAuthorship W4310811269A5028190666 @default.
- W4310811269 hasBestOaLocation W43108112691 @default.
- W4310811269 hasConcept C119857082 @default.
- W4310811269 hasConcept C132976073 @default.
- W4310811269 hasConcept C159985019 @default.
- W4310811269 hasConcept C169258074 @default.
- W4310811269 hasConcept C192562407 @default.
- W4310811269 hasConcept C22019652 @default.
- W4310811269 hasConcept C2779666059 @default.
- W4310811269 hasConcept C41008148 @default.
- W4310811269 hasConcept C50644808 @default.
- W4310811269 hasConcept C523993062 @default.
- W4310811269 hasConcept C6648577 @default.
- W4310811269 hasConcept C68256804 @default.
- W4310811269 hasConcept C87343466 @default.
- W4310811269 hasConceptScore W4310811269C119857082 @default.
- W4310811269 hasConceptScore W4310811269C132976073 @default.
- W4310811269 hasConceptScore W4310811269C159985019 @default.
- W4310811269 hasConceptScore W4310811269C169258074 @default.
- W4310811269 hasConceptScore W4310811269C192562407 @default.
- W4310811269 hasConceptScore W4310811269C22019652 @default.
- W4310811269 hasConceptScore W4310811269C2779666059 @default.
- W4310811269 hasConceptScore W4310811269C41008148 @default.
- W4310811269 hasConceptScore W4310811269C50644808 @default.
- W4310811269 hasConceptScore W4310811269C523993062 @default.