Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310818163> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4310818163 abstract "Abstract One of the most important elements for market acceptance of new technologies is ensuring reliability. Nowhere is this truer than in the shift from well characterized fossil fuel technologies to newer renewable and sustainable energy technologies. The key enabling technology driving these shifts is the development of power converters and inverters. Conventional approaches to assess reliability of these devices have severe drawbacks. Frequent redesigns, often with new parts having no historical data, limit the usefulness of methods based on historical data. Conversely, physics-of-failure approaches often do not capture the most relevant failure mechanisms, including those related to operationally induced electrical overstress and software. In this paper, we will discuss a revolutionary new reliability assessment approach that utilizes advancements in artificial intelligence (AI), machine learning, and data analytics, along with new techniques for characterizing and modeling failure mechanisms to improve power electronics reliability. The reliability assessment method combines AI and machine learning algorithms for analyzing field failure data, with top down models that translate the impacts of grid-connected and grid-parallel mode dynamics and mode-transition dynamics on power systems, and reliability physics degradation models for key failure mechanisms that simulate the effects of both electrical and environmental degradation under field operational stresses. These models can be embedded in digital twins created specifically to replicate the design of current and new inverters. The output of these digital twins reflects the effects of aging and component degradation on system performance and will be transferable to multiple power electronic systems and platforms." @default.
- W4310818163 created "2022-12-18" @default.
- W4310818163 creator A5003404561 @default.
- W4310818163 creator A5010427742 @default.
- W4310818163 creator A5056702823 @default.
- W4310818163 creator A5075033700 @default.
- W4310818163 creator A5082683806 @default.
- W4310818163 creator A5082709091 @default.
- W4310818163 date "2022-10-25" @default.
- W4310818163 modified "2023-10-18" @default.
- W4310818163 title "AI-Based Reliability Assessment of Power Electronic Systems" @default.
- W4310818163 doi "https://doi.org/10.1115/ipack2022-97614" @default.
- W4310818163 hasPublicationYear "2022" @default.
- W4310818163 type Work @default.
- W4310818163 citedByCount "0" @default.
- W4310818163 crossrefType "proceedings-article" @default.
- W4310818163 hasAuthorship W4310818163A5003404561 @default.
- W4310818163 hasAuthorship W4310818163A5010427742 @default.
- W4310818163 hasAuthorship W4310818163A5056702823 @default.
- W4310818163 hasAuthorship W4310818163A5075033700 @default.
- W4310818163 hasAuthorship W4310818163A5082683806 @default.
- W4310818163 hasAuthorship W4310818163A5082709091 @default.
- W4310818163 hasConcept C119599485 @default.
- W4310818163 hasConcept C121332964 @default.
- W4310818163 hasConcept C127413603 @default.
- W4310818163 hasConcept C138331895 @default.
- W4310818163 hasConcept C163258240 @default.
- W4310818163 hasConcept C165801399 @default.
- W4310818163 hasConcept C168167062 @default.
- W4310818163 hasConcept C178911571 @default.
- W4310818163 hasConcept C200601418 @default.
- W4310818163 hasConcept C201995342 @default.
- W4310818163 hasConcept C202444582 @default.
- W4310818163 hasConcept C26517878 @default.
- W4310818163 hasConcept C2778306610 @default.
- W4310818163 hasConcept C33923547 @default.
- W4310818163 hasConcept C38652104 @default.
- W4310818163 hasConcept C41008148 @default.
- W4310818163 hasConcept C43214815 @default.
- W4310818163 hasConcept C62520636 @default.
- W4310818163 hasConcept C66283442 @default.
- W4310818163 hasConcept C9652623 @default.
- W4310818163 hasConcept C97355855 @default.
- W4310818163 hasConceptScore W4310818163C119599485 @default.
- W4310818163 hasConceptScore W4310818163C121332964 @default.
- W4310818163 hasConceptScore W4310818163C127413603 @default.
- W4310818163 hasConceptScore W4310818163C138331895 @default.
- W4310818163 hasConceptScore W4310818163C163258240 @default.
- W4310818163 hasConceptScore W4310818163C165801399 @default.
- W4310818163 hasConceptScore W4310818163C168167062 @default.
- W4310818163 hasConceptScore W4310818163C178911571 @default.
- W4310818163 hasConceptScore W4310818163C200601418 @default.
- W4310818163 hasConceptScore W4310818163C201995342 @default.
- W4310818163 hasConceptScore W4310818163C202444582 @default.
- W4310818163 hasConceptScore W4310818163C26517878 @default.
- W4310818163 hasConceptScore W4310818163C2778306610 @default.
- W4310818163 hasConceptScore W4310818163C33923547 @default.
- W4310818163 hasConceptScore W4310818163C38652104 @default.
- W4310818163 hasConceptScore W4310818163C41008148 @default.
- W4310818163 hasConceptScore W4310818163C43214815 @default.
- W4310818163 hasConceptScore W4310818163C62520636 @default.
- W4310818163 hasConceptScore W4310818163C66283442 @default.
- W4310818163 hasConceptScore W4310818163C9652623 @default.
- W4310818163 hasConceptScore W4310818163C97355855 @default.
- W4310818163 hasLocation W43108181631 @default.
- W4310818163 hasOpenAccess W4310818163 @default.
- W4310818163 hasPrimaryLocation W43108181631 @default.
- W4310818163 hasRelatedWork W1587362694 @default.
- W4310818163 hasRelatedWork W2045854775 @default.
- W4310818163 hasRelatedWork W2081105808 @default.
- W4310818163 hasRelatedWork W2390745155 @default.
- W4310818163 hasRelatedWork W2392420089 @default.
- W4310818163 hasRelatedWork W2573300771 @default.
- W4310818163 hasRelatedWork W2799334495 @default.
- W4310818163 hasRelatedWork W3020905351 @default.
- W4310818163 hasRelatedWork W4256118138 @default.
- W4310818163 hasRelatedWork W820475859 @default.
- W4310818163 isParatext "false" @default.
- W4310818163 isRetracted "false" @default.
- W4310818163 workType "article" @default.