Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310830488> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4310830488 abstract "Audio watermarking is widely used for leaking source tracing. The robustness of the watermark determines the traceability of the algorithm. With the development of digital technology, audio re-recording (AR) has become an efficient and covert means to steal secrets. AR process could drastically destroy the watermark signal while preserving the original information. This puts forward a new requirement for audio watermarking at this stage, that is, to be robust to AR distortions. Unfortunately, none of the existing algorithms can effectively resist AR attacks due to the complexity of the AR process. To address this limitation, this paper proposes DeAR, a deep-learning-based audio re-recording resistant watermarking. Inspired by DNN-based image watermarking, we pioneer a deep learning framework for audio carriers, based on which the watermark signal can be effectively embedded and extracted. Meanwhile, in order to resist the AR attack, we delicately analyze the distortions that occurred in the AR process and design the corresponding distortion layer to cooperate with the proposed watermarking framework. Extensive experiments show that the proposed algorithm can resist not only common electronic channel distortions but also AR distortions. Under the premise of high-quality embedding (SNR=25.86dB), in the case of a common re-recording distance (20cm), the algorithm can effectively achieve an average bit recovery accuracy of 98.55%." @default.
- W4310830488 created "2022-12-19" @default.
- W4310830488 creator A5014963018 @default.
- W4310830488 creator A5022256556 @default.
- W4310830488 creator A5036060690 @default.
- W4310830488 creator A5055128339 @default.
- W4310830488 creator A5064573190 @default.
- W4310830488 creator A5073501391 @default.
- W4310830488 date "2022-12-05" @default.
- W4310830488 modified "2023-10-16" @default.
- W4310830488 title "DeAR: A Deep-learning-based Audio Re-recording Resilient Watermarking" @default.
- W4310830488 doi "https://doi.org/10.48550/arxiv.2212.02339" @default.
- W4310830488 hasPublicationYear "2022" @default.
- W4310830488 type Work @default.
- W4310830488 citedByCount "0" @default.
- W4310830488 crossrefType "posted-content" @default.
- W4310830488 hasAuthorship W4310830488A5014963018 @default.
- W4310830488 hasAuthorship W4310830488A5022256556 @default.
- W4310830488 hasAuthorship W4310830488A5036060690 @default.
- W4310830488 hasAuthorship W4310830488A5055128339 @default.
- W4310830488 hasAuthorship W4310830488A5064573190 @default.
- W4310830488 hasAuthorship W4310830488A5073501391 @default.
- W4310830488 hasBestOaLocation W43108304881 @default.
- W4310830488 hasConcept C104317684 @default.
- W4310830488 hasConcept C108583219 @default.
- W4310830488 hasConcept C111919701 @default.
- W4310830488 hasConcept C115961682 @default.
- W4310830488 hasConcept C126780896 @default.
- W4310830488 hasConcept C138673069 @default.
- W4310830488 hasConcept C13895895 @default.
- W4310830488 hasConcept C150817343 @default.
- W4310830488 hasConcept C154945302 @default.
- W4310830488 hasConcept C164112704 @default.
- W4310830488 hasConcept C185592680 @default.
- W4310830488 hasConcept C194257627 @default.
- W4310830488 hasConcept C2776257435 @default.
- W4310830488 hasConcept C28490314 @default.
- W4310830488 hasConcept C31972630 @default.
- W4310830488 hasConcept C41008148 @default.
- W4310830488 hasConcept C41608201 @default.
- W4310830488 hasConcept C55493867 @default.
- W4310830488 hasConcept C63479239 @default.
- W4310830488 hasConcept C64922751 @default.
- W4310830488 hasConcept C76155785 @default.
- W4310830488 hasConcept C98045186 @default.
- W4310830488 hasConceptScore W4310830488C104317684 @default.
- W4310830488 hasConceptScore W4310830488C108583219 @default.
- W4310830488 hasConceptScore W4310830488C111919701 @default.
- W4310830488 hasConceptScore W4310830488C115961682 @default.
- W4310830488 hasConceptScore W4310830488C126780896 @default.
- W4310830488 hasConceptScore W4310830488C138673069 @default.
- W4310830488 hasConceptScore W4310830488C13895895 @default.
- W4310830488 hasConceptScore W4310830488C150817343 @default.
- W4310830488 hasConceptScore W4310830488C154945302 @default.
- W4310830488 hasConceptScore W4310830488C164112704 @default.
- W4310830488 hasConceptScore W4310830488C185592680 @default.
- W4310830488 hasConceptScore W4310830488C194257627 @default.
- W4310830488 hasConceptScore W4310830488C2776257435 @default.
- W4310830488 hasConceptScore W4310830488C28490314 @default.
- W4310830488 hasConceptScore W4310830488C31972630 @default.
- W4310830488 hasConceptScore W4310830488C41008148 @default.
- W4310830488 hasConceptScore W4310830488C41608201 @default.
- W4310830488 hasConceptScore W4310830488C55493867 @default.
- W4310830488 hasConceptScore W4310830488C63479239 @default.
- W4310830488 hasConceptScore W4310830488C64922751 @default.
- W4310830488 hasConceptScore W4310830488C76155785 @default.
- W4310830488 hasConceptScore W4310830488C98045186 @default.
- W4310830488 hasLocation W43108304881 @default.
- W4310830488 hasOpenAccess W4310830488 @default.
- W4310830488 hasPrimaryLocation W43108304881 @default.
- W4310830488 hasRelatedWork W1539296833 @default.
- W4310830488 hasRelatedWork W1716591209 @default.
- W4310830488 hasRelatedWork W1917245318 @default.
- W4310830488 hasRelatedWork W2019986539 @default.
- W4310830488 hasRelatedWork W2042311553 @default.
- W4310830488 hasRelatedWork W2373573423 @default.
- W4310830488 hasRelatedWork W2384594529 @default.
- W4310830488 hasRelatedWork W2598996165 @default.
- W4310830488 hasRelatedWork W4205836422 @default.
- W4310830488 hasRelatedWork W4281566543 @default.
- W4310830488 isParatext "false" @default.
- W4310830488 isRetracted "false" @default.
- W4310830488 workType "article" @default.