Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310834710> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4310834710 abstract "During the last decade, we have witnessed an ever-increasing growth of inter-connected devices (e.g. IoT, Cloud) and the security assessment of such networks has become more and more essential. Identifying network anomalies represents a promising strategy to detect network intrusions, thefts to users privacy, system damage and fraudulent activities. Thanks to their ability to learn complex anomalies patterns in a complete data-driven fashion, deep neural networks have recently received an increasing attention. However, the application of such techniques is constrained by the peculiar characteristics of network traffic data, which is very sparse and noisy — due to the high number of devices generating data and Internet applications — and suffer from a high imbalance, i.e. anomalies typically occur 0.001-1% of the time. In this work, we handle the above-mentioned challenges with a simple pipeline: first, we identify samples with anomalous behavior by means of an autoencoder (AE); then, an attack classifier is used to assign anomalies to their attack type. We experiment our framework on a million-scale dataset of real-world network traffic data for anomaly detection, showing promising performance in terms of Precision, Recall and F1 scores." @default.
- W4310834710 created "2022-12-19" @default.
- W4310834710 creator A5022700280 @default.
- W4310834710 creator A5038118094 @default.
- W4310834710 creator A5057490206 @default.
- W4310834710 creator A5069541151 @default.
- W4310834710 date "2022-10-26" @default.
- W4310834710 modified "2023-09-27" @default.
- W4310834710 title "A Deep Learning pipeline for Network Anomaly Detection based on Autoencoders" @default.
- W4310834710 cites W193564658 @default.
- W4310834710 cites W1966809779 @default.
- W4310834710 cites W2025768430 @default.
- W4310834710 cites W2278186031 @default.
- W4310834710 cites W2555676925 @default.
- W4310834710 cites W2736937187 @default.
- W4310834710 cites W2803255133 @default.
- W4310834710 cites W2890474333 @default.
- W4310834710 cites W2969495950 @default.
- W4310834710 cites W2995201943 @default.
- W4310834710 cites W3001683812 @default.
- W4310834710 cites W3094123356 @default.
- W4310834710 cites W3107370826 @default.
- W4310834710 cites W3121280449 @default.
- W4310834710 cites W3137199127 @default.
- W4310834710 cites W3184976423 @default.
- W4310834710 cites W3203072121 @default.
- W4310834710 cites W4225526013 @default.
- W4310834710 doi "https://doi.org/10.1109/metroxraine54828.2022.9967598" @default.
- W4310834710 hasPublicationYear "2022" @default.
- W4310834710 type Work @default.
- W4310834710 citedByCount "1" @default.
- W4310834710 countsByYear W43108347102023 @default.
- W4310834710 crossrefType "proceedings-article" @default.
- W4310834710 hasAuthorship W4310834710A5022700280 @default.
- W4310834710 hasAuthorship W4310834710A5038118094 @default.
- W4310834710 hasAuthorship W4310834710A5057490206 @default.
- W4310834710 hasAuthorship W4310834710A5069541151 @default.
- W4310834710 hasConcept C101738243 @default.
- W4310834710 hasConcept C108583219 @default.
- W4310834710 hasConcept C111919701 @default.
- W4310834710 hasConcept C119857082 @default.
- W4310834710 hasConcept C124101348 @default.
- W4310834710 hasConcept C154945302 @default.
- W4310834710 hasConcept C199360897 @default.
- W4310834710 hasConcept C35525427 @default.
- W4310834710 hasConcept C41008148 @default.
- W4310834710 hasConcept C43521106 @default.
- W4310834710 hasConcept C50644808 @default.
- W4310834710 hasConcept C739882 @default.
- W4310834710 hasConcept C79974875 @default.
- W4310834710 hasConcept C81669768 @default.
- W4310834710 hasConcept C95623464 @default.
- W4310834710 hasConceptScore W4310834710C101738243 @default.
- W4310834710 hasConceptScore W4310834710C108583219 @default.
- W4310834710 hasConceptScore W4310834710C111919701 @default.
- W4310834710 hasConceptScore W4310834710C119857082 @default.
- W4310834710 hasConceptScore W4310834710C124101348 @default.
- W4310834710 hasConceptScore W4310834710C154945302 @default.
- W4310834710 hasConceptScore W4310834710C199360897 @default.
- W4310834710 hasConceptScore W4310834710C35525427 @default.
- W4310834710 hasConceptScore W4310834710C41008148 @default.
- W4310834710 hasConceptScore W4310834710C43521106 @default.
- W4310834710 hasConceptScore W4310834710C50644808 @default.
- W4310834710 hasConceptScore W4310834710C739882 @default.
- W4310834710 hasConceptScore W4310834710C79974875 @default.
- W4310834710 hasConceptScore W4310834710C81669768 @default.
- W4310834710 hasConceptScore W4310834710C95623464 @default.
- W4310834710 hasLocation W43108347101 @default.
- W4310834710 hasOpenAccess W4310834710 @default.
- W4310834710 hasPrimaryLocation W43108347101 @default.
- W4310834710 hasRelatedWork W2584408238 @default.
- W4310834710 hasRelatedWork W2587789887 @default.
- W4310834710 hasRelatedWork W3044458868 @default.
- W4310834710 hasRelatedWork W3120593623 @default.
- W4310834710 hasRelatedWork W3176919784 @default.
- W4310834710 hasRelatedWork W4205568523 @default.
- W4310834710 hasRelatedWork W4213225422 @default.
- W4310834710 hasRelatedWork W4285337355 @default.
- W4310834710 hasRelatedWork W4310989423 @default.
- W4310834710 hasRelatedWork W2105086501 @default.
- W4310834710 isParatext "false" @default.
- W4310834710 isRetracted "false" @default.
- W4310834710 workType "article" @default.