Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310842075> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4310842075 endingPage "102936" @default.
- W4310842075 startingPage "102936" @default.
- W4310842075 abstract "Biomass residues encompass non-recyclable municipal solid waste, crop wastes, sewage effluents and sludges, domestic and industrial greywater, etc. Numerous wastes to energy conversion technology use biomass to generate various kinds of renewable energy to reduce environmental issues. The recycling rate seems to rise continuously, but reports reveal that humans are creating more waste than before. Machine learning (ML) can be used that offers a structure to take as a structural enhancement of the fact without being programmed. This study proposes an automated biomass recycling management system using modified grey wolf optimization with deep learning (ABRM-MGWODL) model. The presented ABRM-MGWODL technique aims to effectually identify and categorize the waste objects to enable effectual biomass recycling. The ABRM-MGWODL method would follow 2 major processes: waste object detection and waste object classification. For the waste object recognition and detection process, the YOLO-v4 model is exploited in this work. Next, the graph convolution network (GCN) method can be used for classifying recognized waste objects. Finally, hyperparameter tuning of the GCN model is effectually carried out using the MGWO algorithm, thereby enhancing the ABRM-MGWODL method's classification outcome. A widespread set of simulations were performed to ensure the superior waste classification efficacy of the ABRM-MGWODL model. The simulation outcomes demonstrate the improvements of the ABRM-MGWODL method to other DL models with increased accuracy of 99.01%." @default.
- W4310842075 created "2022-12-19" @default.
- W4310842075 creator A5013697797 @default.
- W4310842075 creator A5016144658 @default.
- W4310842075 creator A5018681803 @default.
- W4310842075 creator A5030500450 @default.
- W4310842075 creator A5034853815 @default.
- W4310842075 creator A5034896032 @default.
- W4310842075 creator A5066659990 @default.
- W4310842075 date "2023-02-01" @default.
- W4310842075 modified "2023-09-23" @default.
- W4310842075 title "Automated biomass recycling management system using modified grey wolf optimization with deep learning model" @default.
- W4310842075 cites W2519501408 @default.
- W4310842075 cites W2947159088 @default.
- W4310842075 cites W2948821915 @default.
- W4310842075 cites W2991494819 @default.
- W4310842075 cites W2994446747 @default.
- W4310842075 cites W3025796581 @default.
- W4310842075 cites W3035063206 @default.
- W4310842075 cites W3049504848 @default.
- W4310842075 cites W3083868315 @default.
- W4310842075 cites W3084731547 @default.
- W4310842075 cites W3088771603 @default.
- W4310842075 cites W3138051224 @default.
- W4310842075 cites W3165392192 @default.
- W4310842075 cites W3181401814 @default.
- W4310842075 cites W3197688494 @default.
- W4310842075 cites W3201331328 @default.
- W4310842075 cites W3202952208 @default.
- W4310842075 cites W4210355581 @default.
- W4310842075 cites W4214538795 @default.
- W4310842075 cites W4283831238 @default.
- W4310842075 cites W4285405115 @default.
- W4310842075 cites W3193863842 @default.
- W4310842075 doi "https://doi.org/10.1016/j.seta.2022.102936" @default.
- W4310842075 hasPublicationYear "2023" @default.
- W4310842075 type Work @default.
- W4310842075 citedByCount "0" @default.
- W4310842075 crossrefType "journal-article" @default.
- W4310842075 hasAuthorship W4310842075A5013697797 @default.
- W4310842075 hasAuthorship W4310842075A5016144658 @default.
- W4310842075 hasAuthorship W4310842075A5018681803 @default.
- W4310842075 hasAuthorship W4310842075A5030500450 @default.
- W4310842075 hasAuthorship W4310842075A5034853815 @default.
- W4310842075 hasAuthorship W4310842075A5034896032 @default.
- W4310842075 hasAuthorship W4310842075A5066659990 @default.
- W4310842075 hasBestOaLocation W43108420751 @default.
- W4310842075 hasConcept C111368507 @default.
- W4310842075 hasConcept C115540264 @default.
- W4310842075 hasConcept C127313418 @default.
- W4310842075 hasConcept C127413603 @default.
- W4310842075 hasConcept C154945302 @default.
- W4310842075 hasConcept C39432304 @default.
- W4310842075 hasConcept C41008148 @default.
- W4310842075 hasConcept C548081761 @default.
- W4310842075 hasConcept C8642999 @default.
- W4310842075 hasConcept C94124525 @default.
- W4310842075 hasConceptScore W4310842075C111368507 @default.
- W4310842075 hasConceptScore W4310842075C115540264 @default.
- W4310842075 hasConceptScore W4310842075C127313418 @default.
- W4310842075 hasConceptScore W4310842075C127413603 @default.
- W4310842075 hasConceptScore W4310842075C154945302 @default.
- W4310842075 hasConceptScore W4310842075C39432304 @default.
- W4310842075 hasConceptScore W4310842075C41008148 @default.
- W4310842075 hasConceptScore W4310842075C548081761 @default.
- W4310842075 hasConceptScore W4310842075C8642999 @default.
- W4310842075 hasConceptScore W4310842075C94124525 @default.
- W4310842075 hasLocation W43108420751 @default.
- W4310842075 hasOpenAccess W4310842075 @default.
- W4310842075 hasPrimaryLocation W43108420751 @default.
- W4310842075 hasRelatedWork W2040397200 @default.
- W4310842075 hasRelatedWork W2365213443 @default.
- W4310842075 hasRelatedWork W2558223934 @default.
- W4310842075 hasRelatedWork W2888998488 @default.
- W4310842075 hasRelatedWork W2899084033 @default.
- W4310842075 hasRelatedWork W2968184507 @default.
- W4310842075 hasRelatedWork W3013319096 @default.
- W4310842075 hasRelatedWork W3198184493 @default.
- W4310842075 hasRelatedWork W4295309597 @default.
- W4310842075 hasRelatedWork W4317352062 @default.
- W4310842075 hasVolume "55" @default.
- W4310842075 isParatext "false" @default.
- W4310842075 isRetracted "false" @default.
- W4310842075 workType "article" @default.