Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310852889> ?p ?o ?g. }
- W4310852889 endingPage "157" @default.
- W4310852889 startingPage "157" @default.
- W4310852889 abstract "Abstract There has been considerable interest in magnetoacoustic waves in static, straight, field-aligned, 1D equilibria where the exteriors of a magnetic slab are different between the two sides. We focus on trapped, transverse fundamental, oblique quasi-kink modes in pressureless setups, where the density varies continuously from a uniform interior (with density ρ i ) to a uniform exterior on either side (with density ρ L or ρ R ), assuming ρ L ≤ ρ R ≤ ρ i . The continuous structuring and oblique propagation make our study new, relative to pertinent studies, and lead to wave damping via the Alfvén resonance. We compute resonantly damped quasi-kink modes as resistive eigenmodes, and isolate the effects of system asymmetry by varying ρ i / ρ R from the “Fully Symmetric” ( ρ i / ρ R = ρ i / ρ L ) to the “Fully Asymmetric” limit ( ρ i / ρ R = 1). We find that the damping rates possess a nonmonotonic ρ i / ρ R -dependence as a result of the difference between the two Alfvén continua, and resonant absorption occurs only in one continuum when ρ i / ρ R is below some threshold. We also find that the system asymmetry results in two qualitatively different regimes for the phase and group diagrams. The phase and group trajectories lie essentially on the same side (different sides) relative to the equilibrium magnetic field when the configuration is not far from a “Fully Asymmetric” (“Fully Symmetric”) one. Our numerical results are understood by making analytical progress in the thin-boundary limit, and discussed for imaging observations of axial standing modes and impulsively excited wavetrains." @default.
- W4310852889 created "2022-12-19" @default.
- W4310852889 creator A5000289968 @default.
- W4310852889 creator A5024895838 @default.
- W4310852889 creator A5048238391 @default.
- W4310852889 creator A5076739003 @default.
- W4310852889 creator A5090292495 @default.
- W4310852889 date "2022-12-01" @default.
- W4310852889 modified "2023-10-14" @default.
- W4310852889 title "Oblique Quasi-kink Modes in Solar Coronal Slabs Embedded in an Asymmetric Magnetic Environment: Resonant Damping, Phase and Group Diagrams" @default.
- W4310852889 cites W1507705291 @default.
- W4310852889 cites W1535165423 @default.
- W4310852889 cites W1595427330 @default.
- W4310852889 cites W1964936325 @default.
- W4310852889 cites W1966731407 @default.
- W4310852889 cites W1967676522 @default.
- W4310852889 cites W1967979669 @default.
- W4310852889 cites W1969292922 @default.
- W4310852889 cites W1971702622 @default.
- W4310852889 cites W1975143604 @default.
- W4310852889 cites W1978366959 @default.
- W4310852889 cites W1979366763 @default.
- W4310852889 cites W1981161373 @default.
- W4310852889 cites W1983937613 @default.
- W4310852889 cites W1984252701 @default.
- W4310852889 cites W1990403449 @default.
- W4310852889 cites W1991239451 @default.
- W4310852889 cites W1999231245 @default.
- W4310852889 cites W1999451901 @default.
- W4310852889 cites W2001579317 @default.
- W4310852889 cites W2004790048 @default.
- W4310852889 cites W2007409861 @default.
- W4310852889 cites W2010059664 @default.
- W4310852889 cites W2010199209 @default.
- W4310852889 cites W2016826701 @default.
- W4310852889 cites W2020166148 @default.
- W4310852889 cites W2021885099 @default.
- W4310852889 cites W2022248879 @default.
- W4310852889 cites W2024961697 @default.
- W4310852889 cites W2030111083 @default.
- W4310852889 cites W2034601455 @default.
- W4310852889 cites W2034949430 @default.
- W4310852889 cites W2039539982 @default.
- W4310852889 cites W2044146181 @default.
- W4310852889 cites W2044987683 @default.
- W4310852889 cites W2057585535 @default.
- W4310852889 cites W2061964226 @default.
- W4310852889 cites W2063391323 @default.
- W4310852889 cites W2065975914 @default.
- W4310852889 cites W2072570018 @default.
- W4310852889 cites W2077359431 @default.
- W4310852889 cites W2082150306 @default.
- W4310852889 cites W2085023632 @default.
- W4310852889 cites W2089528950 @default.
- W4310852889 cites W2092088789 @default.
- W4310852889 cites W2093383274 @default.
- W4310852889 cites W2093463019 @default.
- W4310852889 cites W2102741690 @default.
- W4310852889 cites W2104748052 @default.
- W4310852889 cites W2104979670 @default.
- W4310852889 cites W2105458264 @default.
- W4310852889 cites W2106810373 @default.
- W4310852889 cites W2109839978 @default.
- W4310852889 cites W2115489065 @default.
- W4310852889 cites W2116255315 @default.
- W4310852889 cites W2119005087 @default.
- W4310852889 cites W2122398730 @default.
- W4310852889 cites W2122769670 @default.
- W4310852889 cites W2134890020 @default.
- W4310852889 cites W2153018993 @default.
- W4310852889 cites W2159784903 @default.
- W4310852889 cites W2162902697 @default.
- W4310852889 cites W2164371581 @default.
- W4310852889 cites W2176835556 @default.
- W4310852889 cites W2335539441 @default.
- W4310852889 cites W2490383185 @default.
- W4310852889 cites W2555472512 @default.
- W4310852889 cites W2585298944 @default.
- W4310852889 cites W2615060766 @default.
- W4310852889 cites W2751191086 @default.
- W4310852889 cites W2785681356 @default.
- W4310852889 cites W2790142460 @default.
- W4310852889 cites W2805537490 @default.
- W4310852889 cites W2894758362 @default.
- W4310852889 cites W2903394419 @default.
- W4310852889 cites W2912604869 @default.
- W4310852889 cites W2913534969 @default.
- W4310852889 cites W2946384852 @default.
- W4310852889 cites W2951696346 @default.
- W4310852889 cites W2956946093 @default.
- W4310852889 cites W2964221730 @default.
- W4310852889 cites W3016673012 @default.
- W4310852889 cites W3025080154 @default.
- W4310852889 cites W3043003497 @default.
- W4310852889 cites W3043388562 @default.
- W4310852889 cites W3049749085 @default.
- W4310852889 cites W309026522 @default.
- W4310852889 cites W3092795035 @default.