Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310854579> ?p ?o ?g. }
Showing items 1 to 56 of
56
with 100 items per page.
- W4310854579 abstract "In the present study, a GPS/CNS/SINS federated filter model is proposed firstly to improve the low accuracy of fault detection in multi-sensor integrated navigation system. On this basis, an LVQ neural network assisted integrated navigation fault detection method is developed for LVQ (Learning Vector Quantization) networks with few design parameters, simple network structure and non-normalized input vectors during usage. The optimal number of neurons in the competitive layer is determined by K-CV (Cross Validation) verification method, and LVQ neural network is used to identify and classify the soft and hard faults added at different times. The simulation results indicate that compared with traditional neural network, LVQ neural network achieves higher detection accuracy (93%) with lower CPU usage. Thus, it is convinced that the study has great engineering significance and practical value." @default.
- W4310854579 created "2022-12-19" @default.
- W4310854579 creator A5045821036 @default.
- W4310854579 creator A5065572611 @default.
- W4310854579 creator A5070323644 @default.
- W4310854579 creator A5070450121 @default.
- W4310854579 date "2022-10-28" @default.
- W4310854579 modified "2023-09-26" @default.
- W4310854579 title "Fault detection method of integrated navigation based on LVQ neural network" @default.
- W4310854579 cites W2774790615 @default.
- W4310854579 cites W2890248327 @default.
- W4310854579 cites W2955853657 @default.
- W4310854579 cites W2996077742 @default.
- W4310854579 cites W3212884500 @default.
- W4310854579 cites W4205955646 @default.
- W4310854579 doi "https://doi.org/10.1109/docs55193.2022.9967752" @default.
- W4310854579 hasPublicationYear "2022" @default.
- W4310854579 type Work @default.
- W4310854579 citedByCount "0" @default.
- W4310854579 crossrefType "proceedings-article" @default.
- W4310854579 hasAuthorship W4310854579A5045821036 @default.
- W4310854579 hasAuthorship W4310854579A5065572611 @default.
- W4310854579 hasAuthorship W4310854579A5070323644 @default.
- W4310854579 hasAuthorship W4310854579A5070450121 @default.
- W4310854579 hasConcept C127313418 @default.
- W4310854579 hasConcept C153180895 @default.
- W4310854579 hasConcept C154945302 @default.
- W4310854579 hasConcept C165205528 @default.
- W4310854579 hasConcept C175551986 @default.
- W4310854579 hasConcept C40567965 @default.
- W4310854579 hasConcept C41008148 @default.
- W4310854579 hasConcept C50644808 @default.
- W4310854579 hasConceptScore W4310854579C127313418 @default.
- W4310854579 hasConceptScore W4310854579C153180895 @default.
- W4310854579 hasConceptScore W4310854579C154945302 @default.
- W4310854579 hasConceptScore W4310854579C165205528 @default.
- W4310854579 hasConceptScore W4310854579C175551986 @default.
- W4310854579 hasConceptScore W4310854579C40567965 @default.
- W4310854579 hasConceptScore W4310854579C41008148 @default.
- W4310854579 hasConceptScore W4310854579C50644808 @default.
- W4310854579 hasLocation W43108545791 @default.
- W4310854579 hasOpenAccess W4310854579 @default.
- W4310854579 hasPrimaryLocation W43108545791 @default.
- W4310854579 hasRelatedWork W1517721627 @default.
- W4310854579 hasRelatedWork W2079759840 @default.
- W4310854579 hasRelatedWork W2152738721 @default.
- W4310854579 hasRelatedWork W2374563324 @default.
- W4310854579 hasRelatedWork W2413789176 @default.
- W4310854579 hasRelatedWork W2534269824 @default.
- W4310854579 hasRelatedWork W2621186532 @default.
- W4310854579 hasRelatedWork W27971500 @default.
- W4310854579 hasRelatedWork W3049633467 @default.
- W4310854579 hasRelatedWork W2559504630 @default.
- W4310854579 isParatext "false" @default.
- W4310854579 isRetracted "false" @default.
- W4310854579 workType "article" @default.