Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310856543> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4310856543 endingPage "200160" @default.
- W4310856543 startingPage "200160" @default.
- W4310856543 abstract "COVID pandemic across the world and the emergence of new variants have intensified the need to identify COVID-19 cases quickly and efficiently. In this paper, a novel dual-mode multi-modal approach is presented to detect a covid patient. This has been done using the combination of image of the chest X-ray/CT scan and the clinical notes provided with the scan. Data augmentation techniques are used to extrapolate the dataset. Five different types of image and text models have been employed, including transfer learning. The binary cross entropy loss function and the adam optimizer are used to compile all of these models. The multi-modal is also tried out with existing pre-trained models such as: VGG16, ResNet50, InceptionResNetV2 and MobileNetV2. The final multi-modal gives an accuracy of 97.8% on the testing data. The study provides a different approach to identifying COVID-19 cases using just the scan images and the corresponding notes." @default.
- W4310856543 created "2022-12-19" @default.
- W4310856543 creator A5009450763 @default.
- W4310856543 creator A5016667278 @default.
- W4310856543 creator A5028410528 @default.
- W4310856543 creator A5061007812 @default.
- W4310856543 creator A5063929367 @default.
- W4310856543 creator A5090293666 @default.
- W4310856543 creator A5090410153 @default.
- W4310856543 date "2023-02-01" @default.
- W4310856543 modified "2023-10-14" @default.
- W4310856543 title "Multi-modal image classification of COVID-19 cases using computed tomography and X-rays scans" @default.
- W4310856543 cites W2105453395 @default.
- W4310856543 cites W2788633781 @default.
- W4310856543 cites W2884821113 @default.
- W4310856543 cites W2915754718 @default.
- W4310856543 cites W3004202398 @default.
- W4310856543 cites W3013130152 @default.
- W4310856543 cites W3013601031 @default.
- W4310856543 cites W3024506939 @default.
- W4310856543 cites W3025953162 @default.
- W4310856543 cites W3041916388 @default.
- W4310856543 cites W3048565447 @default.
- W4310856543 cites W3049131298 @default.
- W4310856543 cites W3089168916 @default.
- W4310856543 cites W3091787675 @default.
- W4310856543 cites W3099375441 @default.
- W4310856543 cites W4200226120 @default.
- W4310856543 cites W4205456819 @default.
- W4310856543 cites W4247493843 @default.
- W4310856543 cites W4283071960 @default.
- W4310856543 doi "https://doi.org/10.1016/j.iswa.2022.200160" @default.
- W4310856543 hasPublicationYear "2023" @default.
- W4310856543 type Work @default.
- W4310856543 citedByCount "7" @default.
- W4310856543 countsByYear W43108565432023 @default.
- W4310856543 crossrefType "journal-article" @default.
- W4310856543 hasAuthorship W4310856543A5009450763 @default.
- W4310856543 hasAuthorship W4310856543A5016667278 @default.
- W4310856543 hasAuthorship W4310856543A5028410528 @default.
- W4310856543 hasAuthorship W4310856543A5061007812 @default.
- W4310856543 hasAuthorship W4310856543A5063929367 @default.
- W4310856543 hasAuthorship W4310856543A5090293666 @default.
- W4310856543 hasAuthorship W4310856543A5090410153 @default.
- W4310856543 hasBestOaLocation W43108565431 @default.
- W4310856543 hasConcept C106301342 @default.
- W4310856543 hasConcept C115961682 @default.
- W4310856543 hasConcept C121332964 @default.
- W4310856543 hasConcept C126838900 @default.
- W4310856543 hasConcept C142724271 @default.
- W4310856543 hasConcept C153180895 @default.
- W4310856543 hasConcept C154945302 @default.
- W4310856543 hasConcept C185592680 @default.
- W4310856543 hasConcept C188027245 @default.
- W4310856543 hasConcept C2779134260 @default.
- W4310856543 hasConcept C3008058167 @default.
- W4310856543 hasConcept C41008148 @default.
- W4310856543 hasConcept C524204448 @default.
- W4310856543 hasConcept C544519230 @default.
- W4310856543 hasConcept C62520636 @default.
- W4310856543 hasConcept C71139939 @default.
- W4310856543 hasConcept C71924100 @default.
- W4310856543 hasConceptScore W4310856543C106301342 @default.
- W4310856543 hasConceptScore W4310856543C115961682 @default.
- W4310856543 hasConceptScore W4310856543C121332964 @default.
- W4310856543 hasConceptScore W4310856543C126838900 @default.
- W4310856543 hasConceptScore W4310856543C142724271 @default.
- W4310856543 hasConceptScore W4310856543C153180895 @default.
- W4310856543 hasConceptScore W4310856543C154945302 @default.
- W4310856543 hasConceptScore W4310856543C185592680 @default.
- W4310856543 hasConceptScore W4310856543C188027245 @default.
- W4310856543 hasConceptScore W4310856543C2779134260 @default.
- W4310856543 hasConceptScore W4310856543C3008058167 @default.
- W4310856543 hasConceptScore W4310856543C41008148 @default.
- W4310856543 hasConceptScore W4310856543C524204448 @default.
- W4310856543 hasConceptScore W4310856543C544519230 @default.
- W4310856543 hasConceptScore W4310856543C62520636 @default.
- W4310856543 hasConceptScore W4310856543C71139939 @default.
- W4310856543 hasConceptScore W4310856543C71924100 @default.
- W4310856543 hasLocation W43108565431 @default.
- W4310856543 hasLocation W43108565432 @default.
- W4310856543 hasOpenAccess W4310856543 @default.
- W4310856543 hasPrimaryLocation W43108565431 @default.
- W4310856543 hasRelatedWork W2033914206 @default.
- W4310856543 hasRelatedWork W2042327336 @default.
- W4310856543 hasRelatedWork W2046077695 @default.
- W4310856543 hasRelatedWork W2146076056 @default.
- W4310856543 hasRelatedWork W2163831990 @default.
- W4310856543 hasRelatedWork W2378160586 @default.
- W4310856543 hasRelatedWork W2996038082 @default.
- W4310856543 hasRelatedWork W3003836766 @default.
- W4310856543 hasRelatedWork W3047965787 @default.
- W4310856543 hasRelatedWork W4318214954 @default.
- W4310856543 hasVolume "17" @default.
- W4310856543 isParatext "false" @default.
- W4310856543 isRetracted "false" @default.
- W4310856543 workType "article" @default.