Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310863204> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4310863204 endingPage "103054" @default.
- W4310863204 startingPage "103054" @default.
- W4310863204 abstract "Detecting a large number of attack classes accurately applying machine learning (ML) and deep learning (DL) techniques depends on the number of representative samples available for each attack class. In most cases, the data samples are highly imbalanced that results in a biased intrusion detection model towards the majority classes. Under-sampling, over-sampling and SMOTE are some techniques among the solutions that turn the imbalanced dataset to balanced one. These techniques have not had much impact on the improvement of detection accuracy. To deal with this problem, this paper proposes a Wasserstein Conditional Generative Adversarial Network (WCGAN) combined with an XGBoost Classifier. Gradient penalty along with the WCGAN is used for stable learning of the model. The proposed model is evaluated with some other GAN models (i.e., standard/vanilla GAN, Conditional GAN) which shows the significance of applying WCGAN in this paper. The loss on generated and real data shows a similar pattern and is lower for the Wasserstein variants of GAN compared to the other variants of the GAN model. The performance is benchmarked on three datasets NSL-KDD, UNSW-NB15 and BoT-IoT. The comparison of performance metrics before and after using the proposed framework with XGBoost classifier shows improvement in terms of higher precision, recall and F-1 score. However, comparatively less improvement is observed in FAR compared to other classifiers such as Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM). The proposed work is also compared with a recent similar technique called DGM, which uses conditional GAN along with different ML classification models. The performance of the proposed model outperforms DGM. The proposed model creates a significant footprint (or, attack signatures) to tackle with the problem of data-imbalance during the design of the Intrusion Detection System (IDS)." @default.
- W4310863204 created "2022-12-19" @default.
- W4310863204 creator A5027007388 @default.
- W4310863204 creator A5044709732 @default.
- W4310863204 date "2023-02-01" @default.
- W4310863204 modified "2023-10-11" @default.
- W4310863204 title "Synthetic attack data generation model applying generative adversarial network for intrusion detection" @default.
- W4310863204 cites W1988918299 @default.
- W4310863204 cites W2148143831 @default.
- W4310863204 cites W2732383329 @default.
- W4310863204 cites W2736435690 @default.
- W4310863204 cites W2752291283 @default.
- W4310863204 cites W2897256107 @default.
- W4310863204 cites W2917814433 @default.
- W4310863204 cites W2921871306 @default.
- W4310863204 cites W2924689635 @default.
- W4310863204 cites W2926701059 @default.
- W4310863204 cites W2947802941 @default.
- W4310863204 cites W2958285686 @default.
- W4310863204 cites W2962984188 @default.
- W4310863204 cites W2963518686 @default.
- W4310863204 cites W2963748489 @default.
- W4310863204 cites W2979389376 @default.
- W4310863204 cites W2982853004 @default.
- W4310863204 cites W3003110015 @default.
- W4310863204 cites W3014732532 @default.
- W4310863204 cites W3018495625 @default.
- W4310863204 cites W3021219025 @default.
- W4310863204 cites W3036035276 @default.
- W4310863204 cites W3042350893 @default.
- W4310863204 cites W3044239919 @default.
- W4310863204 cites W3089739557 @default.
- W4310863204 cites W3104141960 @default.
- W4310863204 cites W3119524937 @default.
- W4310863204 cites W3120644841 @default.
- W4310863204 cites W3121355004 @default.
- W4310863204 cites W3127286846 @default.
- W4310863204 cites W3137750955 @default.
- W4310863204 cites W3155962425 @default.
- W4310863204 cites W3157331533 @default.
- W4310863204 cites W3163895120 @default.
- W4310863204 cites W3186080995 @default.
- W4310863204 cites W3187878879 @default.
- W4310863204 cites W3195631217 @default.
- W4310863204 cites W3196382900 @default.
- W4310863204 cites W3205323312 @default.
- W4310863204 cites W4210743106 @default.
- W4310863204 doi "https://doi.org/10.1016/j.cose.2022.103054" @default.
- W4310863204 hasPublicationYear "2023" @default.
- W4310863204 type Work @default.
- W4310863204 citedByCount "4" @default.
- W4310863204 countsByYear W43108632042023 @default.
- W4310863204 crossrefType "journal-article" @default.
- W4310863204 hasAuthorship W4310863204A5027007388 @default.
- W4310863204 hasAuthorship W4310863204A5044709732 @default.
- W4310863204 hasConcept C108583219 @default.
- W4310863204 hasConcept C119857082 @default.
- W4310863204 hasConcept C12267149 @default.
- W4310863204 hasConcept C124101348 @default.
- W4310863204 hasConcept C153180895 @default.
- W4310863204 hasConcept C154945302 @default.
- W4310863204 hasConcept C169258074 @default.
- W4310863204 hasConcept C2988773926 @default.
- W4310863204 hasConcept C35525427 @default.
- W4310863204 hasConcept C41008148 @default.
- W4310863204 hasConcept C81669768 @default.
- W4310863204 hasConcept C84525736 @default.
- W4310863204 hasConcept C95623464 @default.
- W4310863204 hasConceptScore W4310863204C108583219 @default.
- W4310863204 hasConceptScore W4310863204C119857082 @default.
- W4310863204 hasConceptScore W4310863204C12267149 @default.
- W4310863204 hasConceptScore W4310863204C124101348 @default.
- W4310863204 hasConceptScore W4310863204C153180895 @default.
- W4310863204 hasConceptScore W4310863204C154945302 @default.
- W4310863204 hasConceptScore W4310863204C169258074 @default.
- W4310863204 hasConceptScore W4310863204C2988773926 @default.
- W4310863204 hasConceptScore W4310863204C35525427 @default.
- W4310863204 hasConceptScore W4310863204C41008148 @default.
- W4310863204 hasConceptScore W4310863204C81669768 @default.
- W4310863204 hasConceptScore W4310863204C84525736 @default.
- W4310863204 hasConceptScore W4310863204C95623464 @default.
- W4310863204 hasLocation W43108632041 @default.
- W4310863204 hasOpenAccess W4310863204 @default.
- W4310863204 hasPrimaryLocation W43108632041 @default.
- W4310863204 hasRelatedWork W2979111866 @default.
- W4310863204 hasRelatedWork W3001914297 @default.
- W4310863204 hasRelatedWork W3127425528 @default.
- W4310863204 hasRelatedWork W4226398573 @default.
- W4310863204 hasRelatedWork W4249229055 @default.
- W4310863204 hasRelatedWork W4285157290 @default.
- W4310863204 hasRelatedWork W4291801967 @default.
- W4310863204 hasRelatedWork W4308654587 @default.
- W4310863204 hasRelatedWork W4313444831 @default.
- W4310863204 hasRelatedWork W4377081225 @default.
- W4310863204 hasVolume "125" @default.
- W4310863204 isParatext "false" @default.
- W4310863204 isRetracted "false" @default.
- W4310863204 workType "article" @default.