Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310882114> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4310882114 abstract "Crowd crush in mass gatherings during large events are more frequent nowadays. It may get threatening quickly and even cause the death of many. Single camera surveillance is not efficient in large events spreading over wide areas. In multicamera surveillance environment, the centralized decision may not be favourable due to solitude and safety concerns. Moreover, existing neural networks need a large amount of training data for accurate detection. This paper proposes a low-cost system that uses a federated learning setup with light-weight model to reduce overheads during training and protect crowd privacy. We introduce a new loss function, denoted by contrastive focal loss, to reduce false positives and organize overcrowded regions in minimal time. We collect crowd crush and stampede videos to create a new annotated dataset, named as CrowdStampede. We achieve good results under different data distribution settings." @default.
- W4310882114 created "2022-12-20" @default.
- W4310882114 creator A5021223875 @default.
- W4310882114 creator A5088215863 @default.
- W4310882114 date "2022-11-09" @default.
- W4310882114 modified "2023-09-26" @default.
- W4310882114 title "Crowd crush detection in large mass gatherings via federated learning across multicamera environment" @default.
- W4310882114 cites W2066099897 @default.
- W4310882114 cites W2460849547 @default.
- W4310882114 cites W2964232409 @default.
- W4310882114 doi "https://doi.org/10.1145/3563357.3567753" @default.
- W4310882114 hasPublicationYear "2022" @default.
- W4310882114 type Work @default.
- W4310882114 citedByCount "0" @default.
- W4310882114 crossrefType "proceedings-article" @default.
- W4310882114 hasAuthorship W4310882114A5021223875 @default.
- W4310882114 hasAuthorship W4310882114A5088215863 @default.
- W4310882114 hasConcept C108583219 @default.
- W4310882114 hasConcept C119857082 @default.
- W4310882114 hasConcept C14036430 @default.
- W4310882114 hasConcept C154945302 @default.
- W4310882114 hasConcept C2992525071 @default.
- W4310882114 hasConcept C38652104 @default.
- W4310882114 hasConcept C41008148 @default.
- W4310882114 hasConcept C64869954 @default.
- W4310882114 hasConcept C78458016 @default.
- W4310882114 hasConcept C86803240 @default.
- W4310882114 hasConceptScore W4310882114C108583219 @default.
- W4310882114 hasConceptScore W4310882114C119857082 @default.
- W4310882114 hasConceptScore W4310882114C14036430 @default.
- W4310882114 hasConceptScore W4310882114C154945302 @default.
- W4310882114 hasConceptScore W4310882114C2992525071 @default.
- W4310882114 hasConceptScore W4310882114C38652104 @default.
- W4310882114 hasConceptScore W4310882114C41008148 @default.
- W4310882114 hasConceptScore W4310882114C64869954 @default.
- W4310882114 hasConceptScore W4310882114C78458016 @default.
- W4310882114 hasConceptScore W4310882114C86803240 @default.
- W4310882114 hasLocation W43108821141 @default.
- W4310882114 hasOpenAccess W4310882114 @default.
- W4310882114 hasPrimaryLocation W43108821141 @default.
- W4310882114 hasRelatedWork W3014300295 @default.
- W4310882114 hasRelatedWork W3164822677 @default.
- W4310882114 hasRelatedWork W4223943233 @default.
- W4310882114 hasRelatedWork W4225161397 @default.
- W4310882114 hasRelatedWork W4250304930 @default.
- W4310882114 hasRelatedWork W4309045103 @default.
- W4310882114 hasRelatedWork W4312200629 @default.
- W4310882114 hasRelatedWork W4319453009 @default.
- W4310882114 hasRelatedWork W4360585206 @default.
- W4310882114 hasRelatedWork W4364306694 @default.
- W4310882114 isParatext "false" @default.
- W4310882114 isRetracted "false" @default.
- W4310882114 workType "article" @default.