Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310892722> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4310892722 abstract "Driven by the dual carbon goals, China's carbon trading plays an increasingly significant role in carbon emission reduction. The price of carbon trading is the core issue of carbon trading, and predicting changes in the price of carbon trading is of great significance to the long-term low carbon development of enterprises. Based on an in-depth analysis of the properties of Prophet model and Long Short-Term Memory (LSTM) neural network, a combined Prophet-LSTM model for short-term prediction of carbon trading price is proposed in this paper. Prophet and LSTM prediction models are built separately, then a combination model is built by optimizing the weight coefficients for carbon trading price prediction. The data of Hubei carbon trading market from 2019 to 2022 were used as an arithmetic example for validation. The experimental results show that the combined Prophet-LSTM forecasting model has stronger stability and higher accuracy than the standard Prophet model forecasting method, LSTM model forecasting method, ARIMA model forecasting method and SARIMAX model forecasting method in carbon trading price time series analysis. The combined forecasting method proposed in this paper can effectively improve the prediction accuracy of carbon trading price, thus helping enterprises to reasonably assess their carbon assets and control the cost of carbon in production to achieve low carbon and high quality development." @default.
- W4310892722 created "2022-12-20" @default.
- W4310892722 creator A5027170927 @default.
- W4310892722 creator A5050943561 @default.
- W4310892722 date "2022-12-08" @default.
- W4310892722 modified "2023-09-23" @default.
- W4310892722 title "Prophet-LSTM combination model carbon trading price prediction research" @default.
- W4310892722 cites W1981971464 @default.
- W4310892722 cites W2028068740 @default.
- W4310892722 cites W2148398225 @default.
- W4310892722 cites W2584282837 @default.
- W4310892722 cites W2586354609 @default.
- W4310892722 cites W2789996944 @default.
- W4310892722 cites W2791018962 @default.
- W4310892722 cites W2884216212 @default.
- W4310892722 cites W2896532220 @default.
- W4310892722 cites W2901729851 @default.
- W4310892722 cites W2914726594 @default.
- W4310892722 cites W2963763250 @default.
- W4310892722 cites W2977046100 @default.
- W4310892722 cites W2979028505 @default.
- W4310892722 cites W2990569776 @default.
- W4310892722 cites W2998869217 @default.
- W4310892722 cites W3004627076 @default.
- W4310892722 cites W3006174114 @default.
- W4310892722 cites W3010542309 @default.
- W4310892722 cites W3024602720 @default.
- W4310892722 cites W3026288959 @default.
- W4310892722 cites W3032865617 @default.
- W4310892722 cites W3033498332 @default.
- W4310892722 cites W3081979245 @default.
- W4310892722 cites W3095603781 @default.
- W4310892722 cites W3097735338 @default.
- W4310892722 cites W3118647971 @default.
- W4310892722 cites W3124142770 @default.
- W4310892722 cites W3124413522 @default.
- W4310892722 cites W3176985502 @default.
- W4310892722 cites W3201269915 @default.
- W4310892722 cites W3202317651 @default.
- W4310892722 cites W3203223756 @default.
- W4310892722 cites W4200496819 @default.
- W4310892722 doi "https://doi.org/10.1117/12.2653785" @default.
- W4310892722 hasPublicationYear "2022" @default.
- W4310892722 type Work @default.
- W4310892722 citedByCount "0" @default.
- W4310892722 crossrefType "proceedings-article" @default.
- W4310892722 hasAuthorship W4310892722A5027170927 @default.
- W4310892722 hasAuthorship W4310892722A5050943561 @default.
- W4310892722 hasConcept C104779481 @default.
- W4310892722 hasConcept C11413529 @default.
- W4310892722 hasConcept C119857082 @default.
- W4310892722 hasConcept C140205800 @default.
- W4310892722 hasConcept C149782125 @default.
- W4310892722 hasConcept C151406439 @default.
- W4310892722 hasConcept C154945302 @default.
- W4310892722 hasConcept C162324750 @default.
- W4310892722 hasConcept C18903297 @default.
- W4310892722 hasConcept C24338571 @default.
- W4310892722 hasConcept C2779200991 @default.
- W4310892722 hasConcept C41008148 @default.
- W4310892722 hasConcept C47737302 @default.
- W4310892722 hasConcept C50644808 @default.
- W4310892722 hasConcept C86803240 @default.
- W4310892722 hasConceptScore W4310892722C104779481 @default.
- W4310892722 hasConceptScore W4310892722C11413529 @default.
- W4310892722 hasConceptScore W4310892722C119857082 @default.
- W4310892722 hasConceptScore W4310892722C140205800 @default.
- W4310892722 hasConceptScore W4310892722C149782125 @default.
- W4310892722 hasConceptScore W4310892722C151406439 @default.
- W4310892722 hasConceptScore W4310892722C154945302 @default.
- W4310892722 hasConceptScore W4310892722C162324750 @default.
- W4310892722 hasConceptScore W4310892722C18903297 @default.
- W4310892722 hasConceptScore W4310892722C24338571 @default.
- W4310892722 hasConceptScore W4310892722C2779200991 @default.
- W4310892722 hasConceptScore W4310892722C41008148 @default.
- W4310892722 hasConceptScore W4310892722C47737302 @default.
- W4310892722 hasConceptScore W4310892722C50644808 @default.
- W4310892722 hasConceptScore W4310892722C86803240 @default.
- W4310892722 hasLocation W43108927221 @default.
- W4310892722 hasOpenAccess W4310892722 @default.
- W4310892722 hasPrimaryLocation W43108927221 @default.
- W4310892722 hasRelatedWork W1986701140 @default.
- W4310892722 hasRelatedWork W2057363274 @default.
- W4310892722 hasRelatedWork W2117014758 @default.
- W4310892722 hasRelatedWork W2305568609 @default.
- W4310892722 hasRelatedWork W2741589215 @default.
- W4310892722 hasRelatedWork W2810484613 @default.
- W4310892722 hasRelatedWork W2890950401 @default.
- W4310892722 hasRelatedWork W2998167191 @default.
- W4310892722 hasRelatedWork W4313489356 @default.
- W4310892722 hasRelatedWork W2365923219 @default.
- W4310892722 isParatext "false" @default.
- W4310892722 isRetracted "false" @default.
- W4310892722 workType "article" @default.