Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310896129> ?p ?o ?g. }
- W4310896129 endingPage "23693" @default.
- W4310896129 startingPage "23680" @default.
- W4310896129 abstract "Recently, Graph Convolution Network (GCN) and Temporal Convolution Network (TCN) are introduced into traffic prediction and achieve state-of-the-art performance due to their good ability for modeling the spatial and temporal property of traffic data. In spite of having good performance, the current methods generally focus on the traffic measurement of road segments, i.e. the nodes of traffic flow graph, while the edges of the graph, which represent the correlation of traffic data of different road segments and form the affinity matrix for GCN, are usually constructed according to the structure of road network, but the spatial and temporal properties are not well exploited in their theories. In this paper, we propose a Dual Dynamic Spatial-Temporal Graph Convolution Network (DDSTGCN), which not only models the dynamic property of the nodes of the traffic flow graph but also captures the dynamic spatial-temporal feature of the edges by transforming the traffic flow graph into its dual hypergraph. The traffic prediction is enhanced by the collaborative convolutions on the traffic flow graph and its dual hypergraph. The proposed method is evaluated by extensive traffic prediction experiments on six real road datasets and the results show that it outperforms state-of-the-art related methods. Source codes are available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/j1o2h3n/DDSTGCN</uri> ." @default.
- W4310896129 created "2022-12-20" @default.
- W4310896129 creator A5015817857 @default.
- W4310896129 creator A5019048861 @default.
- W4310896129 creator A5027329007 @default.
- W4310896129 creator A5036326215 @default.
- W4310896129 creator A5050137000 @default.
- W4310896129 creator A5082380547 @default.
- W4310896129 creator A5084694395 @default.
- W4310896129 creator A5091545406 @default.
- W4310896129 date "2022-12-01" @default.
- W4310896129 modified "2023-10-14" @default.
- W4310896129 title "Dual Dynamic Spatial-Temporal Graph Convolution Network for Traffic Prediction" @default.
- W4310896129 cites W1549382001 @default.
- W4310896129 cites W1971757341 @default.
- W4310896129 cites W1973943669 @default.
- W4310896129 cites W1974539152 @default.
- W4310896129 cites W1983883318 @default.
- W4310896129 cites W1992575402 @default.
- W4310896129 cites W2007422655 @default.
- W4310896129 cites W2011504567 @default.
- W4310896129 cites W2016287239 @default.
- W4310896129 cites W2025391890 @default.
- W4310896129 cites W2036785686 @default.
- W4310896129 cites W2038622450 @default.
- W4310896129 cites W2040297119 @default.
- W4310896129 cites W2049952439 @default.
- W4310896129 cites W2051241238 @default.
- W4310896129 cites W2064675550 @default.
- W4310896129 cites W2069929199 @default.
- W4310896129 cites W2076077609 @default.
- W4310896129 cites W2080731889 @default.
- W4310896129 cites W2114975872 @default.
- W4310896129 cites W2137919597 @default.
- W4310896129 cites W2139212933 @default.
- W4310896129 cites W2142382652 @default.
- W4310896129 cites W2149866111 @default.
- W4310896129 cites W2150010190 @default.
- W4310896129 cites W2157331557 @default.
- W4310896129 cites W2163517193 @default.
- W4310896129 cites W2166901389 @default.
- W4310896129 cites W2171234954 @default.
- W4310896129 cites W2190353863 @default.
- W4310896129 cites W2281972242 @default.
- W4310896129 cites W2337353068 @default.
- W4310896129 cites W2528639018 @default.
- W4310896129 cites W2550143307 @default.
- W4310896129 cites W2565330852 @default.
- W4310896129 cites W2572939427 @default.
- W4310896129 cites W2573587735 @default.
- W4310896129 cites W2613331518 @default.
- W4310896129 cites W2892880750 @default.
- W4310896129 cites W2903871660 @default.
- W4310896129 cites W2904449562 @default.
- W4310896129 cites W2904832339 @default.
- W4310896129 cites W2912462370 @default.
- W4310896129 cites W2919115771 @default.
- W4310896129 cites W2965341826 @default.
- W4310896129 cites W2996847713 @default.
- W4310896129 cites W2998559444 @default.
- W4310896129 cites W2999301586 @default.
- W4310896129 cites W3027983943 @default.
- W4310896129 cites W3044144773 @default.
- W4310896129 cites W3096030871 @default.
- W4310896129 cites W3103720336 @default.
- W4310896129 cites W3123191313 @default.
- W4310896129 cites W3124529092 @default.
- W4310896129 cites W3125675327 @default.
- W4310896129 cites W4248090385 @default.
- W4310896129 cites W594114979 @default.
- W4310896129 cites W994344872 @default.
- W4310896129 doi "https://doi.org/10.1109/tits.2022.3208943" @default.
- W4310896129 hasPublicationYear "2022" @default.
- W4310896129 type Work @default.
- W4310896129 citedByCount "5" @default.
- W4310896129 countsByYear W43108961292023 @default.
- W4310896129 crossrefType "journal-article" @default.
- W4310896129 hasAuthorship W4310896129A5015817857 @default.
- W4310896129 hasAuthorship W4310896129A5019048861 @default.
- W4310896129 hasAuthorship W4310896129A5027329007 @default.
- W4310896129 hasAuthorship W4310896129A5036326215 @default.
- W4310896129 hasAuthorship W4310896129A5050137000 @default.
- W4310896129 hasAuthorship W4310896129A5082380547 @default.
- W4310896129 hasAuthorship W4310896129A5084694395 @default.
- W4310896129 hasAuthorship W4310896129A5091545406 @default.
- W4310896129 hasConcept C11413529 @default.
- W4310896129 hasConcept C118615104 @default.
- W4310896129 hasConcept C124101348 @default.
- W4310896129 hasConcept C132525143 @default.
- W4310896129 hasConcept C154945302 @default.
- W4310896129 hasConcept C2781221856 @default.
- W4310896129 hasConcept C33923547 @default.
- W4310896129 hasConcept C41008148 @default.
- W4310896129 hasConcept C45347329 @default.
- W4310896129 hasConcept C50644808 @default.
- W4310896129 hasConcept C80444323 @default.
- W4310896129 hasConceptScore W4310896129C11413529 @default.
- W4310896129 hasConceptScore W4310896129C118615104 @default.