Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310911026> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4310911026 abstract "Fractional calculus gained a lot of attention in the last couple of years. Researchers discovered that processes in various fields follow rather fractional dynamics than ordinary integer-ordered dynamics, meaning the corresponding differential equations feature non-integer valued derivatives. There are several arguments for why this is the case, one of them being that fractional derivatives’ inherit spatiotemporal memory and/or the ability to express complex naturally occurring phenomena. Another popular topic nowadays is machine learning, i.e., learning behavior and patterns from historical data. In our ever-changing world with ever-increasing amounts of data, machine learning is a powerful tool for data analysis, problem-solving, modeling, and prediction. It further provides many insights and discoveries in various scientific disciplines. As these two modern-day topics provide a lot of potential for combined approaches to describe complex dynamics, this article reviews combined approaches of fractional derivatives and machine learning from the past, puts them into context, and thus provides a list of possible combined approaches and the corresponding techniques. Note, however, that this article does not deal with neural networks, as there already is profound literature on neural networks and fractional calculus. We sorted past combined approaches from the literature into three categories, i.e., preprocessing, machine learning &amp; fractional dynamics, and optimization. The contributions of fractional derivatives to machine learning are manifold as they provide powerful preprocessing and feature augmentation techniques, can improve physically informed machine learning, and are capable of improving hyperparameter optimization. Thus, this article serves to motivate researchers dealing with data-based problems, to be specific machine learning practitioners, to adopt new tools and enhance their existing approaches." @default.
- W4310911026 created "2022-12-20" @default.
- W4310911026 creator A5041273673 @default.
- W4310911026 creator A5057376617 @default.
- W4310911026 creator A5082152072 @default.
- W4310911026 date "2022-12-08" @default.
- W4310911026 modified "2023-10-18" @default.
- W4310911026 title "Combining Fractional Derivatives and Supervised Machine Learning: A Review" @default.
- W4310911026 doi "https://doi.org/10.20944/preprints202212.0164.v1" @default.
- W4310911026 hasPublicationYear "2022" @default.
- W4310911026 type Work @default.
- W4310911026 citedByCount "0" @default.
- W4310911026 crossrefType "posted-content" @default.
- W4310911026 hasAuthorship W4310911026A5041273673 @default.
- W4310911026 hasAuthorship W4310911026A5057376617 @default.
- W4310911026 hasAuthorship W4310911026A5082152072 @default.
- W4310911026 hasBestOaLocation W43109110261 @default.
- W4310911026 hasConcept C119857082 @default.
- W4310911026 hasConcept C138885662 @default.
- W4310911026 hasConcept C151730666 @default.
- W4310911026 hasConcept C154945302 @default.
- W4310911026 hasConcept C199360897 @default.
- W4310911026 hasConcept C2776401178 @default.
- W4310911026 hasConcept C2779343474 @default.
- W4310911026 hasConcept C34736171 @default.
- W4310911026 hasConcept C41008148 @default.
- W4310911026 hasConcept C41895202 @default.
- W4310911026 hasConcept C50644808 @default.
- W4310911026 hasConcept C86803240 @default.
- W4310911026 hasConcept C97137487 @default.
- W4310911026 hasConceptScore W4310911026C119857082 @default.
- W4310911026 hasConceptScore W4310911026C138885662 @default.
- W4310911026 hasConceptScore W4310911026C151730666 @default.
- W4310911026 hasConceptScore W4310911026C154945302 @default.
- W4310911026 hasConceptScore W4310911026C199360897 @default.
- W4310911026 hasConceptScore W4310911026C2776401178 @default.
- W4310911026 hasConceptScore W4310911026C2779343474 @default.
- W4310911026 hasConceptScore W4310911026C34736171 @default.
- W4310911026 hasConceptScore W4310911026C41008148 @default.
- W4310911026 hasConceptScore W4310911026C41895202 @default.
- W4310911026 hasConceptScore W4310911026C50644808 @default.
- W4310911026 hasConceptScore W4310911026C86803240 @default.
- W4310911026 hasConceptScore W4310911026C97137487 @default.
- W4310911026 hasLocation W43109110261 @default.
- W4310911026 hasLocation W43109110262 @default.
- W4310911026 hasOpenAccess W4310911026 @default.
- W4310911026 hasPrimaryLocation W43109110261 @default.
- W4310911026 hasRelatedWork W2382928216 @default.
- W4310911026 hasRelatedWork W2622473642 @default.
- W4310911026 hasRelatedWork W2889453578 @default.
- W4310911026 hasRelatedWork W2961085424 @default.
- W4310911026 hasRelatedWork W3197541072 @default.
- W4310911026 hasRelatedWork W4286629047 @default.
- W4310911026 hasRelatedWork W4306674287 @default.
- W4310911026 hasRelatedWork W4327738674 @default.
- W4310911026 hasRelatedWork W1629725936 @default.
- W4310911026 hasRelatedWork W4224009465 @default.
- W4310911026 isParatext "false" @default.
- W4310911026 isRetracted "false" @default.
- W4310911026 workType "article" @default.