Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310927679> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4310927679 endingPage "123121" @default.
- W4310927679 startingPage "123121" @default.
- W4310927679 abstract "In this paper, an origami structure of period-1 motions to spiral homoclinic orbits in parameter space is presented for the Rössler system. The edge folds of the origami structure are generated by the saddle-node bifurcations. For each edge, there are two layers to form the origami structure. On one layer of the origami structure, there is a pair of period-doubling bifurcations inducing periodic motions from period-1 to period-2 n motions [Formula: see text]. On such a layer, the unstable period-1 motion goes to the homoclinic orbits with a mapping eigenvalue approaching negative infinity. However, on the corresponding adjacent layers, no period-doubling bifurcations exist, and the unstable period-1 motion goes to the homoclinic orbit with a mapping eigenvalue approaching positive infinity. To determine the origami structure of the period-1 motions to homoclinic orbits, the implicit map of the Rössler system is developed through the discretization of the corresponding differential equations. The Poincaré mapping section can be selected arbitrarily. Before construction of the origami structure, the bifurcation diagram of periodic motions varying with one parameter is developed, and trajectories of stable periodic motions on the bifurcation diagram to homoclinic orbits are illustrated. Finally, the origami structures of period-1 motions to homoclinic orbits are developed through a few layers. This study provides the mathematical mechanisms of period-1 motions to homoclinic orbits, which help one better understand the complexity of periodic motions near the corresponding homoclinic orbit. There are two types of infinitely many homoclinic orbits in the Rössler system, and the corresponding mapping structures of the homoclinic orbits possess positive and negative infinity large eigenvalues. Such infinitely many homoclinic orbits are induced through unstable periodic motions with positive and negative eigenvalues accordingly." @default.
- W4310927679 created "2022-12-21" @default.
- W4310927679 creator A5066503830 @default.
- W4310927679 creator A5076270155 @default.
- W4310927679 date "2022-12-01" @default.
- W4310927679 modified "2023-09-28" @default.
- W4310927679 title "On an origami structure of period-1 motions to homoclinic orbits in the Rössler system" @default.
- W4310927679 cites W1964818691 @default.
- W4310927679 cites W1967008192 @default.
- W4310927679 cites W1968220940 @default.
- W4310927679 cites W1997509966 @default.
- W4310927679 cites W2028679871 @default.
- W4310927679 cites W2056242511 @default.
- W4310927679 cites W2069765806 @default.
- W4310927679 cites W2085988745 @default.
- W4310927679 cites W2091314510 @default.
- W4310927679 cites W2094871671 @default.
- W4310927679 cites W2119368478 @default.
- W4310927679 cites W2141394518 @default.
- W4310927679 cites W2275890290 @default.
- W4310927679 cites W3103487715 @default.
- W4310927679 cites W3148615883 @default.
- W4310927679 cites W3196039654 @default.
- W4310927679 cites W3212111103 @default.
- W4310927679 cites W4226247819 @default.
- W4310927679 cites W4231871155 @default.
- W4310927679 cites W4283077946 @default.
- W4310927679 cites W2168856305 @default.
- W4310927679 doi "https://doi.org/10.1063/5.0131970" @default.
- W4310927679 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36587365" @default.
- W4310927679 hasPublicationYear "2022" @default.
- W4310927679 type Work @default.
- W4310927679 citedByCount "1" @default.
- W4310927679 countsByYear W43109276792023 @default.
- W4310927679 crossrefType "journal-article" @default.
- W4310927679 hasAuthorship W4310927679A5066503830 @default.
- W4310927679 hasAuthorship W4310927679A5076270155 @default.
- W4310927679 hasConcept C121332964 @default.
- W4310927679 hasConcept C134306372 @default.
- W4310927679 hasConcept C155405617 @default.
- W4310927679 hasConcept C158622935 @default.
- W4310927679 hasConcept C184481792 @default.
- W4310927679 hasConcept C200581526 @default.
- W4310927679 hasConcept C24890656 @default.
- W4310927679 hasConcept C2524010 @default.
- W4310927679 hasConcept C2781291010 @default.
- W4310927679 hasConcept C2781349735 @default.
- W4310927679 hasConcept C33923547 @default.
- W4310927679 hasConcept C62520636 @default.
- W4310927679 hasConceptScore W4310927679C121332964 @default.
- W4310927679 hasConceptScore W4310927679C134306372 @default.
- W4310927679 hasConceptScore W4310927679C155405617 @default.
- W4310927679 hasConceptScore W4310927679C158622935 @default.
- W4310927679 hasConceptScore W4310927679C184481792 @default.
- W4310927679 hasConceptScore W4310927679C200581526 @default.
- W4310927679 hasConceptScore W4310927679C24890656 @default.
- W4310927679 hasConceptScore W4310927679C2524010 @default.
- W4310927679 hasConceptScore W4310927679C2781291010 @default.
- W4310927679 hasConceptScore W4310927679C2781349735 @default.
- W4310927679 hasConceptScore W4310927679C33923547 @default.
- W4310927679 hasConceptScore W4310927679C62520636 @default.
- W4310927679 hasIssue "12" @default.
- W4310927679 hasLocation W43109276791 @default.
- W4310927679 hasLocation W43109276792 @default.
- W4310927679 hasOpenAccess W4310927679 @default.
- W4310927679 hasPrimaryLocation W43109276791 @default.
- W4310927679 hasRelatedWork W1986164719 @default.
- W4310927679 hasRelatedWork W1997550282 @default.
- W4310927679 hasRelatedWork W2015099410 @default.
- W4310927679 hasRelatedWork W2042800579 @default.
- W4310927679 hasRelatedWork W2065034950 @default.
- W4310927679 hasRelatedWork W2081334888 @default.
- W4310927679 hasRelatedWork W2090154871 @default.
- W4310927679 hasRelatedWork W2112325763 @default.
- W4310927679 hasRelatedWork W2363270381 @default.
- W4310927679 hasRelatedWork W3115184012 @default.
- W4310927679 hasVolume "32" @default.
- W4310927679 isParatext "false" @default.
- W4310927679 isRetracted "false" @default.
- W4310927679 workType "article" @default.