Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310942657> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4310942657 endingPage "8" @default.
- W4310942657 startingPage "4" @default.
- W4310942657 abstract "Journal of PhycologyVolume 59, Issue 1 p. 4-8 Perspective The model system Ectocarpus: Integrating functional genomics into brown algal research J. Mark Cock, Corresponding Author J. Mark Cock [email protected] orcid.org/0000-0002-2650-0383 Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, FranceAuthor for correspondence: e-mail [email protected].Search for more papers by this author J. Mark Cock, Corresponding Author J. Mark Cock [email protected] orcid.org/0000-0002-2650-0383 Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, FranceAuthor for correspondence: e-mail [email protected].Search for more papers by this author First published: 07 December 2022 https://doi.org/10.1111/jpy.13310 Editorial Responsibility: T. Mock (Associate Editor) Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References Arun, A., Coelho, S. M., Peters, A. F., Bourdareau, S., Pérès, L., Scornet, D., Strittmatter, M. et al. 2019. Convergent recruitment of TALE homeodomain life cycle regulators to direct sporophyte development in land plants and brown algae. Elife 8:e43101. Avia, K., Coelho, S. M., Montecinos, A. E., Cormier, A., Lerck, F., Mauger, S., Faugeron, S., Valero, M., Cock, J. M. & Boudry, P. 2017. High-density genetic map and identification of QTLs for responses to high temperature and low salinity stresses in the model alga Ectocarpus sp. Sci. Rep. 7: 43241. Badis, Y., Scornet, D., Harada, M., Caillard, C., Godfroy, O., Raphalen, M., Gachon, C. M. M., Coelho, S. M., Motomura, T., Nagasato, C. & Cock, J. M. 2021. Targeted CRISPR-Cas9-based gene knockouts in the model brown alga Ectocarpus. New Phytol. 231: 2077– 91. Bai, F. Y., Han, D. Y., Duan, S. F. & Wang, Q. M. 2022. The ecology and evolution of the baker's yeast Saccharomyces cerevisiae. Genes 13: 230. Baudry, L., Guiglielmoni, N., Marie-Nelly, H., Cormier, A., Marbouty, M., Avia, K., Mie, Y. L. et al. 2020. instaGRAAL: chromosome-level quality scaffolding of genomes using a proximity ligation-based scaffolder. Genome Biol. 21: 148. Bourdareau, S., Tirichine, L., Lombard, B., Loew, D., Scornet, D., Wu, Y., Coelho, S. M. & Cock, J. M. 2021. Histone modifications during the life cycle of the brown alga Ectocarpus. Genome Biol. 22: 12. Bourdareau, S., Godfroy, O., Gueno, J., Scornet, D., Coelho, S. M., Tirichine, L. & Cock, J. M. 2022. An efficient chromatin immunoprecipitation protocol for the analysis of histone modification distributions in the brown alga Ectocarpus. Methods Protoc. 5: 36. Bringloe, T. T., Zaparenkov, D., Starko, S., Grant, W. S., Vieira, C., Kawai, H., Hanyuda, T. et al. 2021. Whole-genome sequencing reveals forgotten lineages and recurrent hybridizations within the kelp genus Alaria (Phaeophyceae). J. Phycol. 57: 1721– 38. Cock, J. M., Sterck, L., Rouzé, P., Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V. et al. 2010. The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465: 617– 21. Cormier, A., Avia, K., Sterck, L., Derrien, T., Wucher, V., Andres, G., Monsoor, M. et al. 2017. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus. New Phytol. 214: 219– 32. Couceiro, L., Le Gac, M., Hunsperger, H. M., Mauger, S., Destombe, C., Cock, J. M., Ahmed, S. et al. 2015. Evolution and maintenance of haploid-diploid life cycles in natural populations: the case of the marine brown alga Ectocarpus. Evolution 69: 1808– 22. Cutter, A. D., Dey, A. & Murray, R. L. 2009. Evolution of the Caenorhabditis elegans genome. Mol. Biol. Evol. 26: 1199– 234. Davis, R. H. 2004. The age of model organisms. Nat. Rev. Genet. 5: 69– 76. Dittami, S., Scornet, D., Petit, J., Ségurens, B., Da Silva, C., Corre, E., Dondrup, M. et al. 2009. Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to abiotic stress. Genome Biol. 10: R66. Farnham, G., Strittmatter, M., Coelho, S. M., Cock, J. M. & Brownlee, C. 2013. Gene silencing in Fucus embryos: Developmental consequences of RNAi-mediated cytoskeletal disruption. J. Phycol. 49: 819– 29. Godfroy, O., Uji, T., Nagasato, C., Lipinska, A. P., Scornet, D., Peters, A. F., Avia, K. et al. 2017. DISTAG/TBCCd1 is required for basal cell fate determination in Ectocarpus. Plant Cell 29: 3102– 22. Graf, L., Shin, Y., Yang, J. H., Choi, J. W., Hwang, I. K., Nelson, W., Bhattacharya, D., Viard, F. & Yoon, H. S. 2021. A genome-wide investigation of the effect of farming and human-mediated introduction on the ubiquitous seaweed Undaria pinnatifida. Nat. Ecol. Evol. 5: 360– 8. Gruber, A., Rocap, G., Kroth, P. G., Armbrust, E. V. & Mock, T. 2015. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 81: 519– 28. Gschloessl, B., Guermeur, Y. & Cock, J. M. 2008. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9: 393. Haudry, A., Laurent, S. & Kapun, M. 2020. Population genomics on the fly: Recent advances in Drosophila. Methods Mol. Biol. 2090: 357– 96. Heesch, S., Cho, G. Y., Peters, A. F., Le Corguillé, G., Falentin, C., Boutet, G., Coëdel, S. et al. 2010. A sequence-tagged genetic map for the brown alga Ectocarpus siliculosus provides large-scale assembly of the genome sequence. New Phytol. 188: 42– 51. Macaisne, N., Liu, F., Scornet, D., Peters, A. F., Lipinska, A., Perrineau, M. M., Henry, A., Strittmatter, M., Coelho, S. M. & Cock, J. M. 2017. The Ectocarpus immediate upright gene encodes a member of a novel family of cysteine-rich proteins with an unusual distribution across the eukaryotes. Development 144: 409– 18. Maier, I. 1995. Brown algal pheromones. In F. E. Round & D. J. Chapman [Eds.] Progress in Phycological Research. Biopress, Bristol, pp. 51– 102. Montecinos, A. E., Couceiro, L., Peters, A. F., Desrut, A., Valero, M. & Guillemin, M. L. 2017. Species delimitation and phylogeographic analyses in the Ectocarpus subgroup siliculosi (Ectocarpales, Phaeophyceae). J. Phycol. 53: 17– 31. Müller, D. G. 1964. Life-cycle of Ectocarpus siliculosus from Naples, Italy. Nature 26: 1402. Müller, D. G. 1967. Generationswechsel, Kernphasenwechsel und Sexualität der Braunalge Ectocarpus siliculosus im Kulturversuch. Planta 75: 39– 54. Müller, D. G. 1991. Mendelian segregation of a virus genome during host meiosis in the marine brown alga Ectocarpus siliculosus. J. Plant Physiol. 137: 739– 43. Müller, D. G. & Eichenberger, W. 1997. Mendelian genetics in brown algae: inheritance of a lipid defect mutation and sex alleles in Ectocarpus siliculosus (Ectocarpales, Phaeophyceae). Phycologia 36: 79– 81. Müller, D. G., Jaenicke, L., Donike, M. & Akintobi, T. 1971. Sex attractant in a brown alga: chemical structure. Science 171: 815– 7. Peters, A. F., Marie, D., Scornet, D., Kloareg, B. & Cock, J. M. 2004. Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J. Phycol. 40: 1079– 88. Peters, A. F., Mann, A. D., Córdova, C. A., Brodie, J., Correa, J. A., Schroeder, D. C. & Cock, J. M. 2010. Genetic diversity of Ectocarpus (Ectocarpales, Phaeophyceae) in Peru and northern Chile, the area of origin of the genome-sequenced strain. New Phytol. 188: 30– 41. Ritter, A., Dittami, S. M., Goulitquer, S., Correa, J. A., Boyen, C., Potin, P. & Tonon, T. 2014. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae. BMC Plant Biol. 14: 116. Sterck, L., Billiau, K., Abeel, T., Rouzé, P. & Van de Peer, Y. 2012. ORCAE: Online resource for community annotation of eukaryotes. Nat. Methods 9: 1041. Takou, M., Wieters, B., Kopriva, S., Coupland, G., Linstädter, A. & De Meaux, J. 2019. Linking genes with ecological strategies in Arabidopsis thaliana. J. Exp. Bot. 70: 1141– 51. Tarver, J. E., Cormier, A., Pinzón, N., Taylor, R. S., Carré, W., Strittmatter, M., Seitz, H., Coelho, S. M. & Cock, J. M. 2015. microRNAs and the evolution of complex multicellularity: Identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus. Nucl. Acids Res. 43: 6384– 98. Weigel, D. 2012. Natural variation in Arabidopsis: From molecular genetics to ecological genomics. Plant Physiol. 158: 2– 22. Volume59, Issue1February 2023Pages 4-8 ReferencesRelatedInformation" @default.
- W4310942657 created "2022-12-21" @default.
- W4310942657 creator A5070118646 @default.
- W4310942657 date "2023-01-17" @default.
- W4310942657 modified "2023-10-12" @default.
- W4310942657 title "The model system <i>Ectocarpus</i>: Integrating functional genomics into brown algal research" @default.
- W4310942657 cites W1607203245 @default.
- W4310942657 cites W1647788102 @default.
- W4310942657 cites W1897662038 @default.
- W4310942657 cites W1970831578 @default.
- W4310942657 cites W1987122013 @default.
- W4310942657 cites W2005264606 @default.
- W4310942657 cites W2024057982 @default.
- W4310942657 cites W2024474976 @default.
- W4310942657 cites W2026946403 @default.
- W4310942657 cites W2033973960 @default.
- W4310942657 cites W2086372521 @default.
- W4310942657 cites W2117272111 @default.
- W4310942657 cites W2122799486 @default.
- W4310942657 cites W2144220821 @default.
- W4310942657 cites W2155753085 @default.
- W4310942657 cites W2157221108 @default.
- W4310942657 cites W2163694068 @default.
- W4310942657 cites W2168037097 @default.
- W4310942657 cites W2169123200 @default.
- W4310942657 cites W2444261942 @default.
- W4310942657 cites W2484708630 @default.
- W4310942657 cites W2550865805 @default.
- W4310942657 cites W2567515540 @default.
- W4310942657 cites W2594420068 @default.
- W4310942657 cites W2771780090 @default.
- W4310942657 cites W2905096544 @default.
- W4310942657 cites W2908694859 @default.
- W4310942657 cites W3013168212 @default.
- W4310942657 cites W3036856417 @default.
- W4310942657 cites W3118418700 @default.
- W4310942657 cites W3123918778 @default.
- W4310942657 cites W3165356543 @default.
- W4310942657 cites W3199859542 @default.
- W4310942657 cites W4210497489 @default.
- W4310942657 cites W4224943761 @default.
- W4310942657 doi "https://doi.org/10.1111/jpy.13310" @default.
- W4310942657 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36477437" @default.
- W4310942657 hasPublicationYear "2023" @default.
- W4310942657 type Work @default.
- W4310942657 citedByCount "0" @default.
- W4310942657 crossrefType "journal-article" @default.
- W4310942657 hasAuthorship W4310942657A5070118646 @default.
- W4310942657 hasBestOaLocation W43109426572 @default.
- W4310942657 hasConcept C104317684 @default.
- W4310942657 hasConcept C141231307 @default.
- W4310942657 hasConcept C161078062 @default.
- W4310942657 hasConcept C18903297 @default.
- W4310942657 hasConcept C189206191 @default.
- W4310942657 hasConcept C2988540567 @default.
- W4310942657 hasConcept C522721590 @default.
- W4310942657 hasConcept C54355233 @default.
- W4310942657 hasConcept C559758991 @default.
- W4310942657 hasConcept C70721500 @default.
- W4310942657 hasConcept C86803240 @default.
- W4310942657 hasConceptScore W4310942657C104317684 @default.
- W4310942657 hasConceptScore W4310942657C141231307 @default.
- W4310942657 hasConceptScore W4310942657C161078062 @default.
- W4310942657 hasConceptScore W4310942657C18903297 @default.
- W4310942657 hasConceptScore W4310942657C189206191 @default.
- W4310942657 hasConceptScore W4310942657C2988540567 @default.
- W4310942657 hasConceptScore W4310942657C522721590 @default.
- W4310942657 hasConceptScore W4310942657C54355233 @default.
- W4310942657 hasConceptScore W4310942657C559758991 @default.
- W4310942657 hasConceptScore W4310942657C70721500 @default.
- W4310942657 hasConceptScore W4310942657C86803240 @default.
- W4310942657 hasFunder F4320320883 @default.
- W4310942657 hasFunder F4320322892 @default.
- W4310942657 hasIssue "1" @default.
- W4310942657 hasLocation W43109426571 @default.
- W4310942657 hasLocation W43109426572 @default.
- W4310942657 hasLocation W43109426573 @default.
- W4310942657 hasLocation W43109426574 @default.
- W4310942657 hasLocation W43109426575 @default.
- W4310942657 hasOpenAccess W4310942657 @default.
- W4310942657 hasPrimaryLocation W43109426571 @default.
- W4310942657 hasRelatedWork W2115576822 @default.
- W4310942657 hasRelatedWork W2155595079 @default.
- W4310942657 hasRelatedWork W2263355832 @default.
- W4310942657 hasRelatedWork W2356429006 @default.
- W4310942657 hasRelatedWork W2360935227 @default.
- W4310942657 hasRelatedWork W2364993072 @default.
- W4310942657 hasRelatedWork W2380568150 @default.
- W4310942657 hasRelatedWork W2385787406 @default.
- W4310942657 hasRelatedWork W2411510900 @default.
- W4310942657 hasRelatedWork W284518807 @default.
- W4310942657 hasVolume "59" @default.
- W4310942657 isParatext "false" @default.
- W4310942657 isRetracted "false" @default.
- W4310942657 workType "article" @default.