Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310954865> ?p ?o ?g. }
- W4310954865 endingPage "194" @default.
- W4310954865 startingPage "184" @default.
- W4310954865 abstract "Cardiovascular diseases are a significant health burden with the prevalence increasing worldwide. Thus, a highly accurate assessment and prediction of death risk are crucial to meet the clinical demand. This study sought to develop and validate a model to predict in-hospital mortality among patients with the acute coronary syndrome (ACS) using nonlinear algorithms.A total of 2414 ACS patients were enrolled in this study. All samples were divided into five groups for cross-validation. The logistic regression (LR) model and XGboost model were applied to predict in-hospital mortality. The results of two models were compared between the variable set by the global registry of acute coronary events (GRACE) score and the selected variable set.The in-hospital mortality rate was 3.5% in the dataset. Model performance on the selected variable set was better than that on GRACE variables: a 3% increase in area under the receiver operating characteristic (ROC) curve (AUC) for LR and 1.3% for XGBoost. The AUC of XGBoost is 0.913 (95% confidence interval [CI]: 0.910-0.916), demonstrating a better discrimination ability than LR (AUC = 0.904, 95% CI: 0.902-0.905) on the selected variable set. Almost perfect calibration was found in XGBoost (slope of predicted to observed events, 1.08; intercept, -0.103; p < .001).XGboost modeling, an advanced machine learning algorithm, identifies new variables and provides high accuracy for the prediction of in-hospital mortality in ACS patients." @default.
- W4310954865 created "2022-12-21" @default.
- W4310954865 creator A5002340977 @default.
- W4310954865 creator A5015779745 @default.
- W4310954865 creator A5016806784 @default.
- W4310954865 creator A5042275051 @default.
- W4310954865 creator A5049822206 @default.
- W4310954865 creator A5071835883 @default.
- W4310954865 creator A5077311323 @default.
- W4310954865 creator A5081662538 @default.
- W4310954865 creator A5084553334 @default.
- W4310954865 date "2022-12-07" @default.
- W4310954865 modified "2023-10-13" @default.
- W4310954865 title "Use of machine learning models to predict in‐hospital mortality in patients with acute coronary syndrome" @default.
- W4310954865 cites W1582211720 @default.
- W4310954865 cites W1934667690 @default.
- W4310954865 cites W1997918698 @default.
- W4310954865 cites W2003948925 @default.
- W4310954865 cites W2048456880 @default.
- W4310954865 cites W2049515948 @default.
- W4310954865 cites W2064186732 @default.
- W4310954865 cites W2071098445 @default.
- W4310954865 cites W2077476175 @default.
- W4310954865 cites W2101495104 @default.
- W4310954865 cites W2109858321 @default.
- W4310954865 cites W2114198397 @default.
- W4310954865 cites W2124724401 @default.
- W4310954865 cites W2126087864 @default.
- W4310954865 cites W2139364759 @default.
- W4310954865 cites W2184281474 @default.
- W4310954865 cites W2414171829 @default.
- W4310954865 cites W2484192585 @default.
- W4310954865 cites W2496911238 @default.
- W4310954865 cites W2524178392 @default.
- W4310954865 cites W2607379977 @default.
- W4310954865 cites W2794391878 @default.
- W4310954865 cites W2805244451 @default.
- W4310954865 cites W2894326436 @default.
- W4310954865 cites W2908100363 @default.
- W4310954865 cites W2919604151 @default.
- W4310954865 cites W2946302516 @default.
- W4310954865 cites W2967771606 @default.
- W4310954865 cites W2988851741 @default.
- W4310954865 cites W3012343632 @default.
- W4310954865 cites W3087396405 @default.
- W4310954865 cites W3120311892 @default.
- W4310954865 cites W3127824815 @default.
- W4310954865 cites W3153550236 @default.
- W4310954865 cites W4310954865 @default.
- W4310954865 cites W5767126 @default.
- W4310954865 doi "https://doi.org/10.1002/clc.23957" @default.
- W4310954865 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36479714" @default.
- W4310954865 hasPublicationYear "2022" @default.
- W4310954865 type Work @default.
- W4310954865 citedByCount "2" @default.
- W4310954865 countsByYear W43109548652022 @default.
- W4310954865 countsByYear W43109548652023 @default.
- W4310954865 crossrefType "journal-article" @default.
- W4310954865 hasAuthorship W4310954865A5002340977 @default.
- W4310954865 hasAuthorship W4310954865A5015779745 @default.
- W4310954865 hasAuthorship W4310954865A5016806784 @default.
- W4310954865 hasAuthorship W4310954865A5042275051 @default.
- W4310954865 hasAuthorship W4310954865A5049822206 @default.
- W4310954865 hasAuthorship W4310954865A5071835883 @default.
- W4310954865 hasAuthorship W4310954865A5077311323 @default.
- W4310954865 hasAuthorship W4310954865A5081662538 @default.
- W4310954865 hasAuthorship W4310954865A5084553334 @default.
- W4310954865 hasBestOaLocation W43109548651 @default.
- W4310954865 hasConcept C105795698 @default.
- W4310954865 hasConcept C119857082 @default.
- W4310954865 hasConcept C126322002 @default.
- W4310954865 hasConcept C151956035 @default.
- W4310954865 hasConcept C179755657 @default.
- W4310954865 hasConcept C194828623 @default.
- W4310954865 hasConcept C207386681 @default.
- W4310954865 hasConcept C2776820930 @default.
- W4310954865 hasConcept C2777698277 @default.
- W4310954865 hasConcept C33923547 @default.
- W4310954865 hasConcept C41008148 @default.
- W4310954865 hasConcept C44249647 @default.
- W4310954865 hasConcept C500558357 @default.
- W4310954865 hasConcept C58471807 @default.
- W4310954865 hasConcept C71924100 @default.
- W4310954865 hasConcept C76318530 @default.
- W4310954865 hasConceptScore W4310954865C105795698 @default.
- W4310954865 hasConceptScore W4310954865C119857082 @default.
- W4310954865 hasConceptScore W4310954865C126322002 @default.
- W4310954865 hasConceptScore W4310954865C151956035 @default.
- W4310954865 hasConceptScore W4310954865C179755657 @default.
- W4310954865 hasConceptScore W4310954865C194828623 @default.
- W4310954865 hasConceptScore W4310954865C207386681 @default.
- W4310954865 hasConceptScore W4310954865C2776820930 @default.
- W4310954865 hasConceptScore W4310954865C2777698277 @default.
- W4310954865 hasConceptScore W4310954865C33923547 @default.
- W4310954865 hasConceptScore W4310954865C41008148 @default.
- W4310954865 hasConceptScore W4310954865C44249647 @default.
- W4310954865 hasConceptScore W4310954865C500558357 @default.
- W4310954865 hasConceptScore W4310954865C58471807 @default.