Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310972110> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4310972110 abstract "We consider a broadband over-the-air computation empowered model aggregation scheme for federated learning (FL) in Industrial Internet of Things systems. Due to fading and communication noise, the received global gradient parameters inevitably become inaccurate, leading to a notable decrease of the learning performance. Instead of discarding any edge nodes to reduce the aggregation error, we propose to assign each of them a proper weight coefficient in the model aggregation procedures, i.e., amplitude alignment of the received local gradient parameters from different edge nodes is not required in this paper. We derive an upper bound on the performance loss of the proposed FL scheme, which is shown to be related to the weight coefficients of edge nodes and the mean-squared error (MSE) between the desired global gradient parameters and the actually received ones. Then, we derive a closed-form expression for MSE and use it as the objective function to formulate an optimization problem with respect to the edge nodes’ transmit equalization coefficients, their weight coefficients, and the receive scalars of the cloud server. We transform the formulated optimization problem into a convex one and solve it optimally using CVX. Last, we leverage the popular MNIST dataset and conduct experiments to evaluate the prediction accuracy of the proposed FL scheme. Simulation results demonstrate its superior performances." @default.
- W4310972110 created "2022-12-21" @default.
- W4310972110 creator A5037292846 @default.
- W4310972110 creator A5046529904 @default.
- W4310972110 creator A5070930704 @default.
- W4310972110 creator A5072404159 @default.
- W4310972110 date "2022-10-17" @default.
- W4310972110 modified "2023-09-30" @default.
- W4310972110 title "Broadband Over-the-Air Computation for Federated Learning in Industrial IoT" @default.
- W4310972110 cites W2072566913 @default.
- W4310972110 cites W2112796928 @default.
- W4310972110 cites W2811266402 @default.
- W4310972110 cites W2981138228 @default.
- W4310972110 cites W3090615085 @default.
- W4310972110 cites W3095540342 @default.
- W4310972110 cites W3103657382 @default.
- W4310972110 cites W3155573724 @default.
- W4310972110 cites W3167689670 @default.
- W4310972110 cites W3188102017 @default.
- W4310972110 cites W3191708896 @default.
- W4310972110 cites W3210975694 @default.
- W4310972110 doi "https://doi.org/10.1109/iecon49645.2022.9968873" @default.
- W4310972110 hasPublicationYear "2022" @default.
- W4310972110 type Work @default.
- W4310972110 citedByCount "0" @default.
- W4310972110 crossrefType "proceedings-article" @default.
- W4310972110 hasAuthorship W4310972110A5037292846 @default.
- W4310972110 hasAuthorship W4310972110A5046529904 @default.
- W4310972110 hasAuthorship W4310972110A5070930704 @default.
- W4310972110 hasAuthorship W4310972110A5072404159 @default.
- W4310972110 hasConcept C11413529 @default.
- W4310972110 hasConcept C120314980 @default.
- W4310972110 hasConcept C202839342 @default.
- W4310972110 hasConcept C2986652147 @default.
- W4310972110 hasConcept C2992525071 @default.
- W4310972110 hasConcept C38652104 @default.
- W4310972110 hasConcept C41008148 @default.
- W4310972110 hasConcept C45374587 @default.
- W4310972110 hasConcept C509933004 @default.
- W4310972110 hasConcept C76155785 @default.
- W4310972110 hasConcept C81860439 @default.
- W4310972110 hasConceptScore W4310972110C11413529 @default.
- W4310972110 hasConceptScore W4310972110C120314980 @default.
- W4310972110 hasConceptScore W4310972110C202839342 @default.
- W4310972110 hasConceptScore W4310972110C2986652147 @default.
- W4310972110 hasConceptScore W4310972110C2992525071 @default.
- W4310972110 hasConceptScore W4310972110C38652104 @default.
- W4310972110 hasConceptScore W4310972110C41008148 @default.
- W4310972110 hasConceptScore W4310972110C45374587 @default.
- W4310972110 hasConceptScore W4310972110C509933004 @default.
- W4310972110 hasConceptScore W4310972110C76155785 @default.
- W4310972110 hasConceptScore W4310972110C81860439 @default.
- W4310972110 hasLocation W43109721101 @default.
- W4310972110 hasOpenAccess W4310972110 @default.
- W4310972110 hasPrimaryLocation W43109721101 @default.
- W4310972110 hasRelatedWork W2358970346 @default.
- W4310972110 hasRelatedWork W2379313624 @default.
- W4310972110 hasRelatedWork W2550930058 @default.
- W4310972110 hasRelatedWork W2618984630 @default.
- W4310972110 hasRelatedWork W2792489689 @default.
- W4310972110 hasRelatedWork W3017209816 @default.
- W4310972110 hasRelatedWork W3037063168 @default.
- W4310972110 hasRelatedWork W3117971315 @default.
- W4310972110 hasRelatedWork W4287709797 @default.
- W4310972110 hasRelatedWork W4294943811 @default.
- W4310972110 isParatext "false" @default.
- W4310972110 isRetracted "false" @default.
- W4310972110 workType "article" @default.