Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310972369> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4310972369 abstract "Respiratory complications are quite common to the rescue personnel and often require urgent medical intervention to save an emergency patient. During a rescue mission, based on health vitals, patient’s medical history and first responder’s primary impression, a disease is diagnosed to provide first aid. In this paper, we present a detection model developed with machine learning that can help to make a quick diagnosis of respiratory complications and reduce human error in rescue operation. Current methods are mostly focused on detecting selected respiratory diseases from clinically recorded data or long term historical patients’ data. Here we introduce a novel approach of detecting respiratory complications in general instead of focusing on one complication with 9 years of historical data of a rescue station using machine learning based classifiers e.g Support vector machine(SVM), K-Nearest Neighbor(KNN), Gradient Boosting(GB), Extreme Gradient Boosting(XGB) and Random Forest. Additionally, a performance comparison of these algorithms is shown to identify the best detector. Of all the classifiers implementation, the highest detection accuracy was found with support vector machine and boosting algorithms with 91% using 15 attributes; including patient’s real health symptoms, demographic information and primary diagnosis. The outcome of this research presented in the paper can be used by rescue employees worldwide to detect a respiratory situation and save the life of a patient without any delay." @default.
- W4310972369 created "2022-12-21" @default.
- W4310972369 creator A5049953469 @default.
- W4310972369 creator A5072606831 @default.
- W4310972369 creator A5084195691 @default.
- W4310972369 date "2022-10-17" @default.
- W4310972369 modified "2023-10-18" @default.
- W4310972369 title "Detection of Respiratory Emergency Situation of Rescue Patients with Machine Learning Algorithms" @default.
- W4310972369 cites W1972157484 @default.
- W4310972369 cites W2021429427 @default.
- W4310972369 cites W2088794999 @default.
- W4310972369 cites W2150339230 @default.
- W4310972369 cites W2169665448 @default.
- W4310972369 cites W2247783456 @default.
- W4310972369 cites W2295775753 @default.
- W4310972369 cites W2603666613 @default.
- W4310972369 cites W2886172374 @default.
- W4310972369 cites W2947606239 @default.
- W4310972369 cites W3004511036 @default.
- W4310972369 cites W3008699733 @default.
- W4310972369 cites W3199779234 @default.
- W4310972369 cites W376961572 @default.
- W4310972369 cites W4241709325 @default.
- W4310972369 cites W4254637456 @default.
- W4310972369 doi "https://doi.org/10.1109/iecon49645.2022.9968356" @default.
- W4310972369 hasPublicationYear "2022" @default.
- W4310972369 type Work @default.
- W4310972369 citedByCount "2" @default.
- W4310972369 countsByYear W43109723692023 @default.
- W4310972369 crossrefType "proceedings-article" @default.
- W4310972369 hasAuthorship W4310972369A5049953469 @default.
- W4310972369 hasAuthorship W4310972369A5072606831 @default.
- W4310972369 hasAuthorship W4310972369A5084195691 @default.
- W4310972369 hasConcept C11413529 @default.
- W4310972369 hasConcept C119857082 @default.
- W4310972369 hasConcept C154945302 @default.
- W4310972369 hasConcept C41008148 @default.
- W4310972369 hasConceptScore W4310972369C11413529 @default.
- W4310972369 hasConceptScore W4310972369C119857082 @default.
- W4310972369 hasConceptScore W4310972369C154945302 @default.
- W4310972369 hasConceptScore W4310972369C41008148 @default.
- W4310972369 hasLocation W43109723691 @default.
- W4310972369 hasOpenAccess W4310972369 @default.
- W4310972369 hasPrimaryLocation W43109723691 @default.
- W4310972369 hasRelatedWork W2961085424 @default.
- W4310972369 hasRelatedWork W3046775127 @default.
- W4310972369 hasRelatedWork W3170094116 @default.
- W4310972369 hasRelatedWork W4205958290 @default.
- W4310972369 hasRelatedWork W4225307033 @default.
- W4310972369 hasRelatedWork W4285260836 @default.
- W4310972369 hasRelatedWork W4286629047 @default.
- W4310972369 hasRelatedWork W4306321456 @default.
- W4310972369 hasRelatedWork W4306674287 @default.
- W4310972369 hasRelatedWork W4224009465 @default.
- W4310972369 isParatext "false" @default.
- W4310972369 isRetracted "false" @default.
- W4310972369 workType "article" @default.