Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310995253> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4310995253 abstract "Abstract Tensor networks (TNs) are a family of computational methods built on graph-structured factorizations of large tensors, which have long represented state-of-the-art methods for the approximate simulation of complex quantum systems on classical computers. The rapid pace of recent advancements in numerical computation, notably the rise of GPU and TPU hardware accelerators, have allowed TN algorithms to scale to even larger quantum simulation problems, and to be employed more broadly for solving machine learning tasks. The quantum-inspired nature of TNs permits them to be mapped to parametrized quantum circuits (PQCs), a fact which has inspired recent proposals for enhancing the performance of TN algorithms using near-term quantum devices, as well as enabling joint quantum-classical training frameworks which benefit from the distinct strengths of TN and PQC models. However, the success of any such methods depends on efficient and accurate methods for approximating TN states using realistic quantum circuits, something which remains an unresolved question. In this work, we compare a range of novel and previously-developed algorithmic protocols for decomposing matrix product states (MPS) of arbitrary bond dimension into low-depth quantum circuits consisting of stacked linear layers of two-qubit unitaries. These protocols are formed from different combinations of a preexisting analytical decomposition scheme with constrained optimization of circuit unitaries, and all possess efficient classical runtimes. Our experimental results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods, with even greater benefits seen in the setting of limited computational resources. Given these promising results, we expect our proposed decomposition protocol to form a useful ingredient within any joint application of TNs and PQCs, in turn further unlocking the rich and complementary benefits of classical and quantum computation." @default.
- W4310995253 created "2022-12-22" @default.
- W4310995253 creator A5015678568 @default.
- W4310995253 creator A5016787058 @default.
- W4310995253 creator A5047391219 @default.
- W4310995253 creator A5048379858 @default.
- W4310995253 creator A5082678604 @default.
- W4310995253 date "2022-11-30" @default.
- W4310995253 modified "2023-10-05" @default.
- W4310995253 title "Decomposition of Matrix Product States into Shallow Quantum Circuits" @default.
- W4310995253 doi "https://doi.org/10.21203/rs.3.rs-2235411/v1" @default.
- W4310995253 hasPublicationYear "2022" @default.
- W4310995253 type Work @default.
- W4310995253 citedByCount "0" @default.
- W4310995253 crossrefType "posted-content" @default.
- W4310995253 hasAuthorship W4310995253A5015678568 @default.
- W4310995253 hasAuthorship W4310995253A5016787058 @default.
- W4310995253 hasAuthorship W4310995253A5047391219 @default.
- W4310995253 hasAuthorship W4310995253A5048379858 @default.
- W4310995253 hasAuthorship W4310995253A5082678604 @default.
- W4310995253 hasBestOaLocation W43109952531 @default.
- W4310995253 hasConcept C11413529 @default.
- W4310995253 hasConcept C121332964 @default.
- W4310995253 hasConcept C124148022 @default.
- W4310995253 hasConcept C137019171 @default.
- W4310995253 hasConcept C158693339 @default.
- W4310995253 hasConcept C17349429 @default.
- W4310995253 hasConcept C173608175 @default.
- W4310995253 hasConcept C186468114 @default.
- W4310995253 hasConcept C202444582 @default.
- W4310995253 hasConcept C203087015 @default.
- W4310995253 hasConcept C33923547 @default.
- W4310995253 hasConcept C41008148 @default.
- W4310995253 hasConcept C42355184 @default.
- W4310995253 hasConcept C459310 @default.
- W4310995253 hasConcept C51255310 @default.
- W4310995253 hasConcept C58053490 @default.
- W4310995253 hasConcept C62520636 @default.
- W4310995253 hasConcept C80444323 @default.
- W4310995253 hasConcept C84114770 @default.
- W4310995253 hasConceptScore W4310995253C11413529 @default.
- W4310995253 hasConceptScore W4310995253C121332964 @default.
- W4310995253 hasConceptScore W4310995253C124148022 @default.
- W4310995253 hasConceptScore W4310995253C137019171 @default.
- W4310995253 hasConceptScore W4310995253C158693339 @default.
- W4310995253 hasConceptScore W4310995253C17349429 @default.
- W4310995253 hasConceptScore W4310995253C173608175 @default.
- W4310995253 hasConceptScore W4310995253C186468114 @default.
- W4310995253 hasConceptScore W4310995253C202444582 @default.
- W4310995253 hasConceptScore W4310995253C203087015 @default.
- W4310995253 hasConceptScore W4310995253C33923547 @default.
- W4310995253 hasConceptScore W4310995253C41008148 @default.
- W4310995253 hasConceptScore W4310995253C42355184 @default.
- W4310995253 hasConceptScore W4310995253C459310 @default.
- W4310995253 hasConceptScore W4310995253C51255310 @default.
- W4310995253 hasConceptScore W4310995253C58053490 @default.
- W4310995253 hasConceptScore W4310995253C62520636 @default.
- W4310995253 hasConceptScore W4310995253C80444323 @default.
- W4310995253 hasConceptScore W4310995253C84114770 @default.
- W4310995253 hasLocation W43109952531 @default.
- W4310995253 hasLocation W43109952532 @default.
- W4310995253 hasOpenAccess W4310995253 @default.
- W4310995253 hasPrimaryLocation W43109952531 @default.
- W4310995253 hasRelatedWork W2951211905 @default.
- W4310995253 hasRelatedWork W3006610287 @default.
- W4310995253 hasRelatedWork W4285761530 @default.
- W4310995253 hasRelatedWork W4287021198 @default.
- W4310995253 hasRelatedWork W4289827731 @default.
- W4310995253 hasRelatedWork W4292636030 @default.
- W4310995253 hasRelatedWork W4297726034 @default.
- W4310995253 hasRelatedWork W4309470286 @default.
- W4310995253 hasRelatedWork W4310995253 @default.
- W4310995253 hasRelatedWork W4362706727 @default.
- W4310995253 isParatext "false" @default.
- W4310995253 isRetracted "false" @default.
- W4310995253 workType "article" @default.