Matches in SemOpenAlex for { <https://semopenalex.org/work/W4310997668> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4310997668 abstract "Distributed Acoustic Sensing (DAS) that transforms city-wide fiber-optic cables into a large-scale strain sensing array has shown the potential to revolutionize urban traffic monitoring by providing a fine-grained, scalable, and low-maintenance monitoring solution. However, the real-world application of DAS is hindered by challenges such as noise contamination and interference among closely traveling cars. In response, we introduce a self-supervised U-Net model that can suppress background noise and compress car-induced DAS signals into high-resolution pulses through spatial deconvolution. Our work extends recent research by introducing three key advancements. Firstly, we perform a comprehensive resolution analysis of DAS-recorded traffic signals, laying a theoretical foundation for our approach. Secondly, we incorporate space-domain vehicle wavelets into our U-Net model, enabling consistent high-resolution outputs regardless of vehicle speed variations. Finally, we employ L-2 norm regularization in the loss function, enhancing our model's sensitivity to weaker signals from vehicles in remote traffic lanes. We evaluate the effectiveness and robustness of our method through field recordings under different traffic conditions and various driving speeds. Our results show that our method can enhance the spatial-temporal resolution and better resolve closely traveling cars. The spatial deconvolution U-Net model also enables the characterization of large-size vehicles to identify axle numbers and estimate the vehicle length. Monitoring large-size vehicles also benefits imaging deep earth by leveraging the surface waves induced by the dynamic vehicle-road interaction." @default.
- W4310997668 created "2022-12-22" @default.
- W4310997668 creator A5009808175 @default.
- W4310997668 creator A5035572370 @default.
- W4310997668 creator A5036661708 @default.
- W4310997668 creator A5055391839 @default.
- W4310997668 creator A5060147695 @default.
- W4310997668 creator A5082588269 @default.
- W4310997668 creator A5088747662 @default.
- W4310997668 date "2022-12-07" @default.
- W4310997668 modified "2023-09-27" @default.
- W4310997668 title "Spatial Deep Deconvolution U-Net for Traffic Analyses with Distributed Acoustic Sensing" @default.
- W4310997668 doi "https://doi.org/10.48550/arxiv.2212.03936" @default.
- W4310997668 hasPublicationYear "2022" @default.
- W4310997668 type Work @default.
- W4310997668 citedByCount "0" @default.
- W4310997668 crossrefType "posted-content" @default.
- W4310997668 hasAuthorship W4310997668A5009808175 @default.
- W4310997668 hasAuthorship W4310997668A5035572370 @default.
- W4310997668 hasAuthorship W4310997668A5036661708 @default.
- W4310997668 hasAuthorship W4310997668A5055391839 @default.
- W4310997668 hasAuthorship W4310997668A5060147695 @default.
- W4310997668 hasAuthorship W4310997668A5082588269 @default.
- W4310997668 hasAuthorship W4310997668A5088747662 @default.
- W4310997668 hasBestOaLocation W43109976681 @default.
- W4310997668 hasConcept C104317684 @default.
- W4310997668 hasConcept C11413529 @default.
- W4310997668 hasConcept C115961682 @default.
- W4310997668 hasConcept C119666444 @default.
- W4310997668 hasConcept C121332964 @default.
- W4310997668 hasConcept C154945302 @default.
- W4310997668 hasConcept C174576160 @default.
- W4310997668 hasConcept C185592680 @default.
- W4310997668 hasConcept C205372480 @default.
- W4310997668 hasConcept C205649164 @default.
- W4310997668 hasConcept C41008148 @default.
- W4310997668 hasConcept C47432892 @default.
- W4310997668 hasConcept C48044578 @default.
- W4310997668 hasConcept C55493867 @default.
- W4310997668 hasConcept C62520636 @default.
- W4310997668 hasConcept C62649853 @default.
- W4310997668 hasConcept C63479239 @default.
- W4310997668 hasConcept C77088390 @default.
- W4310997668 hasConcept C79403827 @default.
- W4310997668 hasConcept C99498987 @default.
- W4310997668 hasConceptScore W4310997668C104317684 @default.
- W4310997668 hasConceptScore W4310997668C11413529 @default.
- W4310997668 hasConceptScore W4310997668C115961682 @default.
- W4310997668 hasConceptScore W4310997668C119666444 @default.
- W4310997668 hasConceptScore W4310997668C121332964 @default.
- W4310997668 hasConceptScore W4310997668C154945302 @default.
- W4310997668 hasConceptScore W4310997668C174576160 @default.
- W4310997668 hasConceptScore W4310997668C185592680 @default.
- W4310997668 hasConceptScore W4310997668C205372480 @default.
- W4310997668 hasConceptScore W4310997668C205649164 @default.
- W4310997668 hasConceptScore W4310997668C41008148 @default.
- W4310997668 hasConceptScore W4310997668C47432892 @default.
- W4310997668 hasConceptScore W4310997668C48044578 @default.
- W4310997668 hasConceptScore W4310997668C55493867 @default.
- W4310997668 hasConceptScore W4310997668C62520636 @default.
- W4310997668 hasConceptScore W4310997668C62649853 @default.
- W4310997668 hasConceptScore W4310997668C63479239 @default.
- W4310997668 hasConceptScore W4310997668C77088390 @default.
- W4310997668 hasConceptScore W4310997668C79403827 @default.
- W4310997668 hasConceptScore W4310997668C99498987 @default.
- W4310997668 hasLocation W43109976681 @default.
- W4310997668 hasOpenAccess W4310997668 @default.
- W4310997668 hasPrimaryLocation W43109976681 @default.
- W4310997668 hasRelatedWork W1590127618 @default.
- W4310997668 hasRelatedWork W1995555723 @default.
- W4310997668 hasRelatedWork W2012188213 @default.
- W4310997668 hasRelatedWork W2058901796 @default.
- W4310997668 hasRelatedWork W2071901489 @default.
- W4310997668 hasRelatedWork W2093113882 @default.
- W4310997668 hasRelatedWork W2359359472 @default.
- W4310997668 hasRelatedWork W2548891393 @default.
- W4310997668 hasRelatedWork W3033991124 @default.
- W4310997668 hasRelatedWork W2162720446 @default.
- W4310997668 isParatext "false" @default.
- W4310997668 isRetracted "false" @default.
- W4310997668 workType "article" @default.