Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311009153> ?p ?o ?g. }
- W4311009153 endingPage "109785" @default.
- W4311009153 startingPage "109785" @default.
- W4311009153 abstract "Flash flood is one of the most severe natural disasters around the world, and has caused sizeable economic losses and countless death. Assessing flash flood susceptibility by hybrid models of statistical and machine learning methods is essential for flood mitigation strategies and disaster preparedness. Although classifying the flash flood conditioning factors becomes a crucial step before applying these hybrid models, their impact on the accuracy of integrated modeling is still unclear. Most previous studies used natural break classification (NBC) and quantile classification methods by default to conduct the classification, but more classification methods have not been tried. In this context, this study introduced three clustering algorithms of K-Means, Expectation Maximization, and ISOMaximum likelihood algorithm (ISOMax) into the classification of factors, and compared them to NBC and quantile classification. To test the impact of classification methods on integrated modeling, these classification results were applied into the construction of three hybrid models (i.e., the integrating of frequency ratio with support vector machines, random forest, and bayesian-regularization neural networks). Then, the accuracy of these hybrid models was evaluated by using ROC curves and statistical indicators. The classification results show that the clustering intervals in the same factor varied with classification algorithms. It can be found from the model performance evaluation results that different classification algorithms will lead to discrepancies in accuracy of integrated modeling. Compared to NBC, the ISOMax allows a better fitting and prediction ability of hybrid models in this study. The application of clustering algorithm provides a new perspective for improving the accuracy of integrated modeling." @default.
- W4311009153 created "2022-12-22" @default.
- W4311009153 creator A5020040862 @default.
- W4311009153 creator A5021961966 @default.
- W4311009153 creator A5027835055 @default.
- W4311009153 creator A5036936200 @default.
- W4311009153 creator A5059780514 @default.
- W4311009153 creator A5079763153 @default.
- W4311009153 creator A5089440360 @default.
- W4311009153 date "2023-02-01" @default.
- W4311009153 modified "2023-10-17" @default.
- W4311009153 title "A new avenue to improve the performance of integrated modeling for flash flood susceptibility assessment: Applying cluster algorithms" @default.
- W4311009153 cites W1974614011 @default.
- W4311009153 cites W1975914988 @default.
- W4311009153 cites W1978273417 @default.
- W4311009153 cites W1987654030 @default.
- W4311009153 cites W1994214164 @default.
- W4311009153 cites W2027386095 @default.
- W4311009153 cites W2042315239 @default.
- W4311009153 cites W2065642067 @default.
- W4311009153 cites W2072708097 @default.
- W4311009153 cites W2122588877 @default.
- W4311009153 cites W2408377373 @default.
- W4311009153 cites W2477379665 @default.
- W4311009153 cites W2578271006 @default.
- W4311009153 cites W2601707113 @default.
- W4311009153 cites W2604912589 @default.
- W4311009153 cites W2626132026 @default.
- W4311009153 cites W2626788333 @default.
- W4311009153 cites W2741596643 @default.
- W4311009153 cites W2750708462 @default.
- W4311009153 cites W2761698665 @default.
- W4311009153 cites W2766228856 @default.
- W4311009153 cites W2768410738 @default.
- W4311009153 cites W2780363565 @default.
- W4311009153 cites W2791328889 @default.
- W4311009153 cites W2802893388 @default.
- W4311009153 cites W2895196240 @default.
- W4311009153 cites W2899116890 @default.
- W4311009153 cites W2903237317 @default.
- W4311009153 cites W2918437719 @default.
- W4311009153 cites W2927539500 @default.
- W4311009153 cites W2947212008 @default.
- W4311009153 cites W2954347045 @default.
- W4311009153 cites W2958711105 @default.
- W4311009153 cites W2972064142 @default.
- W4311009153 cites W2973053290 @default.
- W4311009153 cites W2989700724 @default.
- W4311009153 cites W2993767981 @default.
- W4311009153 cites W2998999740 @default.
- W4311009153 cites W3001074089 @default.
- W4311009153 cites W3005791898 @default.
- W4311009153 cites W3006114317 @default.
- W4311009153 cites W3008830771 @default.
- W4311009153 cites W3019758389 @default.
- W4311009153 cites W3036595569 @default.
- W4311009153 cites W3044454105 @default.
- W4311009153 cites W3048436541 @default.
- W4311009153 cites W3048733089 @default.
- W4311009153 cites W3086470909 @default.
- W4311009153 cites W3087236291 @default.
- W4311009153 cites W3095965565 @default.
- W4311009153 cites W3097201354 @default.
- W4311009153 cites W3097690705 @default.
- W4311009153 cites W3111111052 @default.
- W4311009153 cites W3128768470 @default.
- W4311009153 cites W3140276143 @default.
- W4311009153 cites W3141715805 @default.
- W4311009153 cites W3166172900 @default.
- W4311009153 cites W3212708356 @default.
- W4311009153 cites W37018364 @default.
- W4311009153 cites W4213284611 @default.
- W4311009153 cites W4280533664 @default.
- W4311009153 cites W4281609125 @default.
- W4311009153 cites W588320544 @default.
- W4311009153 doi "https://doi.org/10.1016/j.ecolind.2022.109785" @default.
- W4311009153 hasPublicationYear "2023" @default.
- W4311009153 type Work @default.
- W4311009153 citedByCount "3" @default.
- W4311009153 countsByYear W43110091532023 @default.
- W4311009153 crossrefType "journal-article" @default.
- W4311009153 hasAuthorship W4311009153A5020040862 @default.
- W4311009153 hasAuthorship W4311009153A5021961966 @default.
- W4311009153 hasAuthorship W4311009153A5027835055 @default.
- W4311009153 hasAuthorship W4311009153A5036936200 @default.
- W4311009153 hasAuthorship W4311009153A5059780514 @default.
- W4311009153 hasAuthorship W4311009153A5079763153 @default.
- W4311009153 hasAuthorship W4311009153A5089440360 @default.
- W4311009153 hasBestOaLocation W43110091531 @default.
- W4311009153 hasConcept C110083411 @default.
- W4311009153 hasConcept C11413529 @default.
- W4311009153 hasConcept C119857082 @default.
- W4311009153 hasConcept C12267149 @default.
- W4311009153 hasConcept C124101348 @default.
- W4311009153 hasConcept C151730666 @default.
- W4311009153 hasConcept C154945302 @default.
- W4311009153 hasConcept C169258074 @default.
- W4311009153 hasConcept C2779343474 @default.