Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311014098> ?p ?o ?g. }
- W4311014098 endingPage "9323" @default.
- W4311014098 startingPage "9323" @default.
- W4311014098 abstract "Addressing data anomalies (e.g., garbage data, outliers, redundant data, and missing data) plays a vital role in performing accurate analytics (billing, forecasting, load profiling, etc.) on smart homes’ energy consumption data. From the literature, it has been identified that the data imputation with machine learning (ML)-based single-classifier approaches are used to address data quality issues. However, these approaches are not effective to address the hidden issues of smart home energy consumption data due to the presence of a variety of anomalies. Hence, this paper proposes ML-based ensemble classifiers using random forest (RF), support vector machine (SVM), decision tree (DT), naive Bayes, K-nearest neighbor, and neural networks to handle all the possible anomalies in smart home energy consumption data. The proposed approach initially identifies all anomalies and removes them, and then imputes this removed/missing information. The entire implementation consists of four parts. Part 1 presents anomaly detection and removal, part 2 presents data imputation, part 3 presents single-classifier approaches, and part 4 presents ensemble classifiers approaches. To assess the classifiers’ performance, various metrics, namely, accuracy, precision, recall/sensitivity, specificity, and F1 score are computed. From these metrics, it is identified that the ensemble classifier “RF+SVM+DT” has shown superior performance over the conventional single classifiers as well the other ensemble classifiers for anomaly handling." @default.
- W4311014098 created "2022-12-22" @default.
- W4311014098 creator A5009704763 @default.
- W4311014098 creator A5032081151 @default.
- W4311014098 creator A5079800217 @default.
- W4311014098 creator A5083391382 @default.
- W4311014098 date "2022-11-30" @default.
- W4311014098 modified "2023-10-01" @default.
- W4311014098 title "Machine Learning-Based Ensemble Classifiers for Anomaly Handling in Smart Home Energy Consumption Data" @default.
- W4311014098 cites W2122131850 @default.
- W4311014098 cites W2316007180 @default.
- W4311014098 cites W2552500151 @default.
- W4311014098 cites W2560464769 @default.
- W4311014098 cites W2618986947 @default.
- W4311014098 cites W2819873736 @default.
- W4311014098 cites W2883446184 @default.
- W4311014098 cites W2913259953 @default.
- W4311014098 cites W2926030578 @default.
- W4311014098 cites W2958786037 @default.
- W4311014098 cites W2969938686 @default.
- W4311014098 cites W3007665943 @default.
- W4311014098 cites W3042795714 @default.
- W4311014098 cites W3045430323 @default.
- W4311014098 cites W3083176882 @default.
- W4311014098 cites W3102259139 @default.
- W4311014098 cites W3118677457 @default.
- W4311014098 cites W3122263456 @default.
- W4311014098 cites W3129225410 @default.
- W4311014098 cites W3170657538 @default.
- W4311014098 cites W3176484245 @default.
- W4311014098 cites W3179164182 @default.
- W4311014098 cites W3188373407 @default.
- W4311014098 cites W3195694313 @default.
- W4311014098 cites W3197922937 @default.
- W4311014098 cites W3204223310 @default.
- W4311014098 cites W3214210995 @default.
- W4311014098 cites W4205784232 @default.
- W4311014098 cites W4214656630 @default.
- W4311014098 cites W4226239514 @default.
- W4311014098 cites W4226412754 @default.
- W4311014098 cites W4286484218 @default.
- W4311014098 cites W4294233923 @default.
- W4311014098 doi "https://doi.org/10.3390/s22239323" @default.
- W4311014098 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36502025" @default.
- W4311014098 hasPublicationYear "2022" @default.
- W4311014098 type Work @default.
- W4311014098 citedByCount "5" @default.
- W4311014098 countsByYear W43110140982022 @default.
- W4311014098 countsByYear W43110140982023 @default.
- W4311014098 crossrefType "journal-article" @default.
- W4311014098 hasAuthorship W4311014098A5009704763 @default.
- W4311014098 hasAuthorship W4311014098A5032081151 @default.
- W4311014098 hasAuthorship W4311014098A5079800217 @default.
- W4311014098 hasAuthorship W4311014098A5083391382 @default.
- W4311014098 hasBestOaLocation W43110140981 @default.
- W4311014098 hasConcept C119857082 @default.
- W4311014098 hasConcept C119898033 @default.
- W4311014098 hasConcept C12267149 @default.
- W4311014098 hasConcept C124101348 @default.
- W4311014098 hasConcept C154945302 @default.
- W4311014098 hasConcept C169258074 @default.
- W4311014098 hasConcept C41008148 @default.
- W4311014098 hasConcept C45942800 @default.
- W4311014098 hasConcept C52001869 @default.
- W4311014098 hasConcept C58041806 @default.
- W4311014098 hasConcept C739882 @default.
- W4311014098 hasConcept C79337645 @default.
- W4311014098 hasConcept C84525736 @default.
- W4311014098 hasConcept C9357733 @default.
- W4311014098 hasConcept C95623464 @default.
- W4311014098 hasConceptScore W4311014098C119857082 @default.
- W4311014098 hasConceptScore W4311014098C119898033 @default.
- W4311014098 hasConceptScore W4311014098C12267149 @default.
- W4311014098 hasConceptScore W4311014098C124101348 @default.
- W4311014098 hasConceptScore W4311014098C154945302 @default.
- W4311014098 hasConceptScore W4311014098C169258074 @default.
- W4311014098 hasConceptScore W4311014098C41008148 @default.
- W4311014098 hasConceptScore W4311014098C45942800 @default.
- W4311014098 hasConceptScore W4311014098C52001869 @default.
- W4311014098 hasConceptScore W4311014098C58041806 @default.
- W4311014098 hasConceptScore W4311014098C739882 @default.
- W4311014098 hasConceptScore W4311014098C79337645 @default.
- W4311014098 hasConceptScore W4311014098C84525736 @default.
- W4311014098 hasConceptScore W4311014098C9357733 @default.
- W4311014098 hasConceptScore W4311014098C95623464 @default.
- W4311014098 hasIssue "23" @default.
- W4311014098 hasLocation W43110140981 @default.
- W4311014098 hasLocation W43110140982 @default.
- W4311014098 hasLocation W43110140983 @default.
- W4311014098 hasLocation W43110140984 @default.
- W4311014098 hasOpenAccess W4311014098 @default.
- W4311014098 hasPrimaryLocation W43110140981 @default.
- W4311014098 hasRelatedWork W2904660175 @default.
- W4311014098 hasRelatedWork W3170920059 @default.
- W4311014098 hasRelatedWork W3210696866 @default.
- W4311014098 hasRelatedWork W4206256357 @default.
- W4311014098 hasRelatedWork W4285298015 @default.
- W4311014098 hasRelatedWork W4293069612 @default.