Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311046772> ?p ?o ?g. }
- W4311046772 endingPage "400" @default.
- W4311046772 startingPage "377" @default.
- W4311046772 abstract "Abstract A case study with seismic geophone data from the unstable Åknes rock slope in Norway is considered. This rock slope is monitored because there is a risk of severe flooding if the massive-size rock falls into the fjord. The geophone data is highly valuable because it provides 1000 Hz sampling rates data which are streamed to a web resource for real-time analysis. The focus here is on building a classifier for these data to distinguish different types of microseismic events which are in turn indicative of the various processes occurring on the slope. There are 24 time series from eight 3-component geophone data for about 3500 events in total, and each of the event time series has a length of 16 s. For the classification task, novel machine learning methods such as deep convolutional neural networks are leveraged. Ensemble prediction is used to extract information from all time series, and this is seen to give large improvements compared with doing immediate aggregation of the data. Further, self-supervised learning is evaluated to give added value here, in particular for the case with very limited training data." @default.
- W4311046772 created "2022-12-23" @default.
- W4311046772 creator A5005779985 @default.
- W4311046772 creator A5019959002 @default.
- W4311046772 creator A5056224879 @default.
- W4311046772 creator A5071734277 @default.
- W4311046772 date "2022-11-30" @default.
- W4311046772 modified "2023-10-14" @default.
- W4311046772 title "Ensemble and Self-supervised Learning for Improved Classification of Seismic Signals from the Åknes Rockslope" @default.
- W4311046772 cites W1912547071 @default.
- W4311046772 cites W1963899048 @default.
- W4311046772 cites W1982067015 @default.
- W4311046772 cites W2007757881 @default.
- W4311046772 cites W2015606836 @default.
- W4311046772 cites W2037709691 @default.
- W4311046772 cites W2089928476 @default.
- W4311046772 cites W2097117768 @default.
- W4311046772 cites W2098085861 @default.
- W4311046772 cites W2107410991 @default.
- W4311046772 cites W2112796928 @default.
- W4311046772 cites W2124034668 @default.
- W4311046772 cites W2124656873 @default.
- W4311046772 cites W2131380685 @default.
- W4311046772 cites W2148618863 @default.
- W4311046772 cites W2149825812 @default.
- W4311046772 cites W2165878107 @default.
- W4311046772 cites W2167329658 @default.
- W4311046772 cites W2194775991 @default.
- W4311046772 cites W2293932830 @default.
- W4311046772 cites W2337692196 @default.
- W4311046772 cites W2560194956 @default.
- W4311046772 cites W2594559052 @default.
- W4311046772 cites W2608518078 @default.
- W4311046772 cites W2618530766 @default.
- W4311046772 cites W2769597756 @default.
- W4311046772 cites W2787894218 @default.
- W4311046772 cites W2894155549 @default.
- W4311046772 cites W2979475574 @default.
- W4311046772 cites W3008003211 @default.
- W4311046772 cites W3034801187 @default.
- W4311046772 cites W3035524453 @default.
- W4311046772 cites W3082115395 @default.
- W4311046772 cites W3164055533 @default.
- W4311046772 cites W3171007011 @default.
- W4311046772 cites W4226049810 @default.
- W4311046772 cites W4233118537 @default.
- W4311046772 cites W4312443924 @default.
- W4311046772 doi "https://doi.org/10.1007/s11004-022-10037-7" @default.
- W4311046772 hasPublicationYear "2022" @default.
- W4311046772 type Work @default.
- W4311046772 citedByCount "4" @default.
- W4311046772 countsByYear W43110467722023 @default.
- W4311046772 crossrefType "journal-article" @default.
- W4311046772 hasAuthorship W4311046772A5005779985 @default.
- W4311046772 hasAuthorship W4311046772A5019959002 @default.
- W4311046772 hasAuthorship W4311046772A5056224879 @default.
- W4311046772 hasAuthorship W4311046772A5071734277 @default.
- W4311046772 hasBestOaLocation W43110467721 @default.
- W4311046772 hasConcept C119857082 @default.
- W4311046772 hasConcept C124101348 @default.
- W4311046772 hasConcept C127313418 @default.
- W4311046772 hasConcept C151406439 @default.
- W4311046772 hasConcept C153180895 @default.
- W4311046772 hasConcept C154945302 @default.
- W4311046772 hasConcept C165205528 @default.
- W4311046772 hasConcept C41008148 @default.
- W4311046772 hasConcept C50644808 @default.
- W4311046772 hasConcept C54187759 @default.
- W4311046772 hasConcept C7266685 @default.
- W4311046772 hasConcept C81363708 @default.
- W4311046772 hasConcept C95623464 @default.
- W4311046772 hasConceptScore W4311046772C119857082 @default.
- W4311046772 hasConceptScore W4311046772C124101348 @default.
- W4311046772 hasConceptScore W4311046772C127313418 @default.
- W4311046772 hasConceptScore W4311046772C151406439 @default.
- W4311046772 hasConceptScore W4311046772C153180895 @default.
- W4311046772 hasConceptScore W4311046772C154945302 @default.
- W4311046772 hasConceptScore W4311046772C165205528 @default.
- W4311046772 hasConceptScore W4311046772C41008148 @default.
- W4311046772 hasConceptScore W4311046772C50644808 @default.
- W4311046772 hasConceptScore W4311046772C54187759 @default.
- W4311046772 hasConceptScore W4311046772C7266685 @default.
- W4311046772 hasConceptScore W4311046772C81363708 @default.
- W4311046772 hasConceptScore W4311046772C95623464 @default.
- W4311046772 hasFunder F4320323299 @default.
- W4311046772 hasIssue "3" @default.
- W4311046772 hasLocation W43110467721 @default.
- W4311046772 hasOpenAccess W4311046772 @default.
- W4311046772 hasPrimaryLocation W43110467721 @default.
- W4311046772 hasRelatedWork W2563096758 @default.
- W4311046772 hasRelatedWork W2767651786 @default.
- W4311046772 hasRelatedWork W2912288872 @default.
- W4311046772 hasRelatedWork W2936488316 @default.
- W4311046772 hasRelatedWork W3021430260 @default.
- W4311046772 hasRelatedWork W3027997911 @default.
- W4311046772 hasRelatedWork W4225852842 @default.
- W4311046772 hasRelatedWork W4287776258 @default.
- W4311046772 hasRelatedWork W4386053843 @default.