Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311046879> ?p ?o ?g. }
- W4311046879 abstract "Background When facing unprecedented emergencies such as the coronavirus disease 2019 (COVID-19) pandemic, a predictive artificial intelligence (AI) model with real-time customized designs can be helpful for clinical decision-making support in constantly changing environments. We created models and compared the performance of AI in collaboration with a clinician and that of AI alone to predict the need for supplemental oxygen based on local, non-image data of patients with COVID-19. Materials and methods We enrolled 30 patients with COVID-19 who were aged >60 years on admission and not treated with oxygen therapy between December 1, 2020 and January 4, 2021 in this 50-bed, single-center retrospective cohort study. The outcome was requirement for oxygen after admission. Results The model performance to predict the need for oxygen by AI in collaboration with a clinician was better than that by AI alone. Sodium chloride difference >33.5 emerged as a novel indicator to predict the need for oxygen in patients with COVID-19. To prevent severe COVID-19 in older patients, dehydration compensation may be considered in pre-hospitalization care. Conclusion In clinical practice, our approach enables the building of a better predictive model with prompt clinician feedback even in new scenarios. These can be applied not only to current and future pandemic situations but also to other diseases within the healthcare system." @default.
- W4311046879 created "2022-12-23" @default.
- W4311046879 creator A5017399758 @default.
- W4311046879 creator A5019508043 @default.
- W4311046879 creator A5019564755 @default.
- W4311046879 creator A5027650834 @default.
- W4311046879 creator A5033630033 @default.
- W4311046879 creator A5036140335 @default.
- W4311046879 creator A5038162416 @default.
- W4311046879 creator A5041062200 @default.
- W4311046879 creator A5050564961 @default.
- W4311046879 creator A5068655669 @default.
- W4311046879 creator A5087916612 @default.
- W4311046879 date "2022-11-30" @default.
- W4311046879 modified "2023-09-30" @default.
- W4311046879 title "Predicting oxygen requirements in patients with coronavirus disease 2019 using an artificial intelligence-clinician model based on local non-image data" @default.
- W4311046879 cites W1971733235 @default.
- W4311046879 cites W2019694480 @default.
- W4311046879 cites W2509713658 @default.
- W4311046879 cites W2594902662 @default.
- W4311046879 cites W2756431941 @default.
- W4311046879 cites W2890949773 @default.
- W4311046879 cites W2897434820 @default.
- W4311046879 cites W2900565551 @default.
- W4311046879 cites W2916522870 @default.
- W4311046879 cites W2916772164 @default.
- W4311046879 cites W2942444880 @default.
- W4311046879 cites W2948864380 @default.
- W4311046879 cites W2980030301 @default.
- W4311046879 cites W2980993898 @default.
- W4311046879 cites W2984645840 @default.
- W4311046879 cites W3004691496 @default.
- W4311046879 cites W3007464329 @default.
- W4311046879 cites W3020655115 @default.
- W4311046879 cites W3036298167 @default.
- W4311046879 cites W3084346490 @default.
- W4311046879 cites W3087266742 @default.
- W4311046879 cites W3088332688 @default.
- W4311046879 cites W3089226077 @default.
- W4311046879 cites W3089226424 @default.
- W4311046879 cites W3089291865 @default.
- W4311046879 cites W3097853396 @default.
- W4311046879 cites W3113263159 @default.
- W4311046879 cites W3128285035 @default.
- W4311046879 cites W3142858163 @default.
- W4311046879 cites W3159814022 @default.
- W4311046879 cites W3159860661 @default.
- W4311046879 cites W3163443162 @default.
- W4311046879 cites W3167210620 @default.
- W4311046879 cites W3177044444 @default.
- W4311046879 cites W3199259730 @default.
- W4311046879 cites W3200098356 @default.
- W4311046879 cites W3205261621 @default.
- W4311046879 cites W3208906956 @default.
- W4311046879 cites W3208954293 @default.
- W4311046879 cites W3211004188 @default.
- W4311046879 cites W3211531177 @default.
- W4311046879 cites W4200418539 @default.
- W4311046879 cites W4205126619 @default.
- W4311046879 cites W4205711848 @default.
- W4311046879 cites W4206775434 @default.
- W4311046879 cites W4210916375 @default.
- W4311046879 cites W4210950012 @default.
- W4311046879 cites W4210969170 @default.
- W4311046879 cites W4212873498 @default.
- W4311046879 cites W4212881260 @default.
- W4311046879 cites W4224285589 @default.
- W4311046879 cites W4226484901 @default.
- W4311046879 cites W4285136690 @default.
- W4311046879 cites W4287845271 @default.
- W4311046879 cites W4288450780 @default.
- W4311046879 cites W4302759462 @default.
- W4311046879 doi "https://doi.org/10.3389/fmed.2022.1042067" @default.
- W4311046879 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36530899" @default.
- W4311046879 hasPublicationYear "2022" @default.
- W4311046879 type Work @default.
- W4311046879 citedByCount "0" @default.
- W4311046879 crossrefType "journal-article" @default.
- W4311046879 hasAuthorship W4311046879A5017399758 @default.
- W4311046879 hasAuthorship W4311046879A5019508043 @default.
- W4311046879 hasAuthorship W4311046879A5019564755 @default.
- W4311046879 hasAuthorship W4311046879A5027650834 @default.
- W4311046879 hasAuthorship W4311046879A5033630033 @default.
- W4311046879 hasAuthorship W4311046879A5036140335 @default.
- W4311046879 hasAuthorship W4311046879A5038162416 @default.
- W4311046879 hasAuthorship W4311046879A5041062200 @default.
- W4311046879 hasAuthorship W4311046879A5050564961 @default.
- W4311046879 hasAuthorship W4311046879A5068655669 @default.
- W4311046879 hasAuthorship W4311046879A5087916612 @default.
- W4311046879 hasBestOaLocation W43110468791 @default.
- W4311046879 hasConcept C126322002 @default.
- W4311046879 hasConcept C141071460 @default.
- W4311046879 hasConcept C154945302 @default.
- W4311046879 hasConcept C167135981 @default.
- W4311046879 hasConcept C178790620 @default.
- W4311046879 hasConcept C185592680 @default.
- W4311046879 hasConcept C194828623 @default.
- W4311046879 hasConcept C2779134260 @default.
- W4311046879 hasConcept C2780630273 @default.
- W4311046879 hasConcept C2994142871 @default.