Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311048978> ?p ?o ?g. }
- W4311048978 abstract "Abstract The recently reported machine learning- or deep learning-based scoring functions (SFs) have shown exciting performance in predicting protein–ligand binding affinities with fruitful application prospects. However, the differentiation between highly similar ligand conformations, including the native binding pose (the global energy minimum state), remains challenging that could greatly enhance the docking. In this work, we propose a fully differentiable, end-to-end framework for ligand pose optimization based on a hybrid SF called DeepRMSD+Vina combined with a multi-layer perceptron (DeepRMSD) and the traditional AutoDock Vina SF. The DeepRMSD+Vina, which combines (1) the root mean square deviation (RMSD) of the docking pose with respect to the native pose and (2) the AutoDock Vina score, is fully differentiable; thus is capable of optimizing the ligand binding pose to the energy-lowest conformation. Evaluated by the CASF-2016 docking power dataset, the DeepRMSD+Vina reaches a success rate of 94.4%, which outperforms most reported SFs to date. We evaluated the ligand conformation optimization framework in practical molecular docking scenarios (redocking and cross-docking tasks), revealing the high potentialities of this framework in drug design and discovery. Structural analysis shows that this framework has the ability to identify key physical interactions in protein–ligand binding, such as hydrogen-bonding. Our work provides a paradigm for optimizing ligand conformations based on deep learning algorithms. The DeepRMSD+Vina model and the optimization framework are available at GitHub repository https://github.com/zchwang/DeepRMSD-Vina_Optimization." @default.
- W4311048978 created "2022-12-23" @default.
- W4311048978 creator A5007757141 @default.
- W4311048978 creator A5029472602 @default.
- W4311048978 creator A5033111996 @default.
- W4311048978 creator A5037823825 @default.
- W4311048978 creator A5047970310 @default.
- W4311048978 creator A5060816658 @default.
- W4311048978 creator A5071286986 @default.
- W4311048978 creator A5078691114 @default.
- W4311048978 date "2022-12-10" @default.
- W4311048978 modified "2023-09-29" @default.
- W4311048978 title "A fully differentiable ligand pose optimization framework guided by deep learning and a traditional scoring function" @default.
- W4311048978 cites W1500036797 @default.
- W4311048978 cites W1968319881 @default.
- W4311048978 cites W1985588649 @default.
- W4311048978 cites W1986240377 @default.
- W4311048978 cites W2001586003 @default.
- W4311048978 cites W2005817231 @default.
- W4311048978 cites W2009423060 @default.
- W4311048978 cites W2030286884 @default.
- W4311048978 cites W2042572511 @default.
- W4311048978 cites W2067669378 @default.
- W4311048978 cites W2148512505 @default.
- W4311048978 cites W2550887636 @default.
- W4311048978 cites W2578119541 @default.
- W4311048978 cites W2784213390 @default.
- W4311048978 cites W2807540482 @default.
- W4311048978 cites W2902812092 @default.
- W4311048978 cites W2921473648 @default.
- W4311048978 cites W2922063386 @default.
- W4311048978 cites W2943893168 @default.
- W4311048978 cites W2949504121 @default.
- W4311048978 cites W2951676304 @default.
- W4311048978 cites W2969325194 @default.
- W4311048978 cites W2971801381 @default.
- W4311048978 cites W2972485984 @default.
- W4311048978 cites W2972541552 @default.
- W4311048978 cites W2985816842 @default.
- W4311048978 cites W3004874934 @default.
- W4311048978 cites W3005417975 @default.
- W4311048978 cites W3008726875 @default.
- W4311048978 cites W3012012790 @default.
- W4311048978 cites W3028815767 @default.
- W4311048978 cites W3046909847 @default.
- W4311048978 cites W3048079539 @default.
- W4311048978 cites W3087491618 @default.
- W4311048978 cites W3098189759 @default.
- W4311048978 cites W3122618795 @default.
- W4311048978 cites W3128361605 @default.
- W4311048978 cites W3132447912 @default.
- W4311048978 cites W3135935512 @default.
- W4311048978 cites W3137067752 @default.
- W4311048978 cites W3138367350 @default.
- W4311048978 cites W3156693194 @default.
- W4311048978 cites W3157078379 @default.
- W4311048978 cites W3158144848 @default.
- W4311048978 cites W3162155458 @default.
- W4311048978 cites W3164081635 @default.
- W4311048978 cites W3165548596 @default.
- W4311048978 cites W3172747904 @default.
- W4311048978 cites W3185720802 @default.
- W4311048978 cites W3194726356 @default.
- W4311048978 cites W3209909976 @default.
- W4311048978 cites W3216686093 @default.
- W4311048978 cites W4200139236 @default.
- W4311048978 cites W4210311437 @default.
- W4311048978 cites W4210716706 @default.
- W4311048978 cites W4213371498 @default.
- W4311048978 cites W4224271565 @default.
- W4311048978 cites W4282835253 @default.
- W4311048978 cites W4289518623 @default.
- W4311048978 doi "https://doi.org/10.1093/bib/bbac520" @default.
- W4311048978 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36502369" @default.
- W4311048978 hasPublicationYear "2022" @default.
- W4311048978 type Work @default.
- W4311048978 citedByCount "7" @default.
- W4311048978 countsByYear W43110489782023 @default.
- W4311048978 crossrefType "journal-article" @default.
- W4311048978 hasAuthorship W4311048978A5007757141 @default.
- W4311048978 hasAuthorship W4311048978A5029472602 @default.
- W4311048978 hasAuthorship W4311048978A5033111996 @default.
- W4311048978 hasAuthorship W4311048978A5037823825 @default.
- W4311048978 hasAuthorship W4311048978A5047970310 @default.
- W4311048978 hasAuthorship W4311048978A5060816658 @default.
- W4311048978 hasAuthorship W4311048978A5071286986 @default.
- W4311048978 hasAuthorship W4311048978A5078691114 @default.
- W4311048978 hasBestOaLocation W43110489782 @default.
- W4311048978 hasConcept C103697762 @default.
- W4311048978 hasConcept C104317684 @default.
- W4311048978 hasConcept C108583219 @default.
- W4311048978 hasConcept C116569031 @default.
- W4311048978 hasConcept C119857082 @default.
- W4311048978 hasConcept C134306372 @default.
- W4311048978 hasConcept C154945302 @default.
- W4311048978 hasConcept C159110408 @default.
- W4311048978 hasConcept C170493617 @default.
- W4311048978 hasConcept C185592680 @default.
- W4311048978 hasConcept C202615002 @default.
- W4311048978 hasConcept C2775905019 @default.