Matches in SemOpenAlex for { <https://semopenalex.org/work/W4311061644> ?p ?o ?g. }
- W4311061644 endingPage "2799" @default.
- W4311061644 startingPage "2785" @default.
- W4311061644 abstract "Composite structures are widely used due to their excellent performance. To improve their safety and reliability, non-destructive testing (NDT) methods are implemented to achieve efficient damage detection. In this paper, a novel stress–strain-based damage detection approach is proposed for composite structures by using continuous wavelet transform (CWT) and selective kernel convolutional network (SKNet), which exhibit good robustness when dealing with the stress–strain signals collected from different positions of composite structures. First, a stress–strain-based measuring scheme is designed for vibration response monitoring of the composite structures. Second, the collected stress–strain signals are converted into two-dimensional time–frequency images by the CWT. Then, the SKNet is constructed to classify these images for damage detection. Finally, an experimental test is conducted on a composite capsule, data from which is employed to evaluate the proposed method. The comparison results of our proposed method and other state-of-the-art approaches demonstrate its superiority." @default.
- W4311061644 created "2022-12-23" @default.
- W4311061644 creator A5004574678 @default.
- W4311061644 creator A5034579880 @default.
- W4311061644 creator A5040651707 @default.
- W4311061644 creator A5047138391 @default.
- W4311061644 creator A5088888083 @default.
- W4311061644 date "2022-12-01" @default.
- W4311061644 modified "2023-10-16" @default.
- W4311061644 title "Stress–strain-based crack damage detection of composite structures using selective kernel convolutional networks and continuous wavelet transform" @default.
- W4311061644 cites W2035676206 @default.
- W4311061644 cites W2041820270 @default.
- W4311061644 cites W2097117768 @default.
- W4311061644 cites W2112796928 @default.
- W4311061644 cites W2126678359 @default.
- W4311061644 cites W2605747908 @default.
- W4311061644 cites W2765424437 @default.
- W4311061644 cites W2793569066 @default.
- W4311061644 cites W2797606213 @default.
- W4311061644 cites W2884067447 @default.
- W4311061644 cites W2888865870 @default.
- W4311061644 cites W2907007702 @default.
- W4311061644 cites W2909444320 @default.
- W4311061644 cites W2914939306 @default.
- W4311061644 cites W2963420686 @default.
- W4311061644 cites W2968819106 @default.
- W4311061644 cites W2976640287 @default.
- W4311061644 cites W2978144367 @default.
- W4311061644 cites W2986990094 @default.
- W4311061644 cites W2989799676 @default.
- W4311061644 cites W3008894544 @default.
- W4311061644 cites W3037944824 @default.
- W4311061644 cites W3042648368 @default.
- W4311061644 cites W3081878687 @default.
- W4311061644 cites W3097068663 @default.
- W4311061644 cites W3120385414 @default.
- W4311061644 cites W3122126208 @default.
- W4311061644 cites W3149607345 @default.
- W4311061644 cites W3153593751 @default.
- W4311061644 cites W3157855421 @default.
- W4311061644 cites W3158768656 @default.
- W4311061644 cites W3162544942 @default.
- W4311061644 cites W3163399745 @default.
- W4311061644 cites W3163734136 @default.
- W4311061644 cites W3165635672 @default.
- W4311061644 cites W3167081425 @default.
- W4311061644 cites W3195010849 @default.
- W4311061644 cites W3201487749 @default.
- W4311061644 cites W3209424713 @default.
- W4311061644 cites W4200086463 @default.
- W4311061644 cites W4200221661 @default.
- W4311061644 doi "https://doi.org/10.1177/14759217221134452" @default.
- W4311061644 hasPublicationYear "2022" @default.
- W4311061644 type Work @default.
- W4311061644 citedByCount "0" @default.
- W4311061644 crossrefType "journal-article" @default.
- W4311061644 hasAuthorship W4311061644A5004574678 @default.
- W4311061644 hasAuthorship W4311061644A5034579880 @default.
- W4311061644 hasAuthorship W4311061644A5040651707 @default.
- W4311061644 hasAuthorship W4311061644A5047138391 @default.
- W4311061644 hasAuthorship W4311061644A5088888083 @default.
- W4311061644 hasConcept C104317684 @default.
- W4311061644 hasConcept C104779481 @default.
- W4311061644 hasConcept C11413529 @default.
- W4311061644 hasConcept C114614502 @default.
- W4311061644 hasConcept C127413603 @default.
- W4311061644 hasConcept C138885662 @default.
- W4311061644 hasConcept C153180895 @default.
- W4311061644 hasConcept C154945302 @default.
- W4311061644 hasConcept C185592680 @default.
- W4311061644 hasConcept C192562407 @default.
- W4311061644 hasConcept C196216189 @default.
- W4311061644 hasConcept C21036866 @default.
- W4311061644 hasConcept C33923547 @default.
- W4311061644 hasConcept C41008148 @default.
- W4311061644 hasConcept C41895202 @default.
- W4311061644 hasConcept C46286280 @default.
- W4311061644 hasConcept C47432892 @default.
- W4311061644 hasConcept C55493867 @default.
- W4311061644 hasConcept C63479239 @default.
- W4311061644 hasConcept C66938386 @default.
- W4311061644 hasConcept C74193536 @default.
- W4311061644 hasConcept C81363708 @default.
- W4311061644 hasConcept C95722684 @default.
- W4311061644 hasConceptScore W4311061644C104317684 @default.
- W4311061644 hasConceptScore W4311061644C104779481 @default.
- W4311061644 hasConceptScore W4311061644C11413529 @default.
- W4311061644 hasConceptScore W4311061644C114614502 @default.
- W4311061644 hasConceptScore W4311061644C127413603 @default.
- W4311061644 hasConceptScore W4311061644C138885662 @default.
- W4311061644 hasConceptScore W4311061644C153180895 @default.
- W4311061644 hasConceptScore W4311061644C154945302 @default.
- W4311061644 hasConceptScore W4311061644C185592680 @default.
- W4311061644 hasConceptScore W4311061644C192562407 @default.
- W4311061644 hasConceptScore W4311061644C196216189 @default.
- W4311061644 hasConceptScore W4311061644C21036866 @default.
- W4311061644 hasConceptScore W4311061644C33923547 @default.
- W4311061644 hasConceptScore W4311061644C41008148 @default.